【題目】如圖,在平面直角坐標(biāo)系xOy中,P是直線y=2上的一個(gè)動(dòng)點(diǎn),⊙P的半徑為1,直線OQ切⊙P于點(diǎn)Q,則線段OQ取最小值時(shí),Q點(diǎn)的坐標(biāo)為_____.
【答案】(,).
【解析】
連接PQ、OP,如圖,根據(jù)切線的性質(zhì)得PQ⊥OQ,再利用勾股定理得到OQ=,利用垂線段最短,當(dāng)OP最小時(shí),OQ最小,然后求出OP的最小值,得到OQ的最小值,于是得到結(jié)論.
連接PQ、OP,如圖,
∵直線OQ切⊙P于點(diǎn)Q,
∴PQ⊥OQ,
在Rt△OPQ中,OQ==,
當(dāng)OP最小時(shí),OQ最小,
當(dāng)OP⊥直線y=2時(shí),OP有最小值2,
∴OQ的最小值為=.
設(shè)點(diǎn)Q的橫坐標(biāo)為a,
∴S△OPQ=×=×2×|a,
∴a=,
∴Q點(diǎn)的縱坐標(biāo)==,
∴Q點(diǎn)的坐標(biāo)為(,),
故答案為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,AD、BC相交于點(diǎn)O,OA=OC,∠OBD=∠ODB.求證:AB=CD.
(2)如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若OD=,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c分別交 x軸于A(4,0)、B(1,0),交y軸于點(diǎn)C(0,﹣3),過點(diǎn)A的直線交拋物線與另一點(diǎn)D.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q在線段AC上,且Q點(diǎn)到x軸的距離為,連接PC、PQ,當(dāng)△PCQ周長(zhǎng)最小時(shí),求出點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的結(jié)論下,連接PD,在平面內(nèi)是否存在△A1P1D1,使△A1P1D1≌△APD(點(diǎn)A1、P1、D1的對(duì)應(yīng)點(diǎn)分別是A、P、D,A1P1平行于y軸,點(diǎn)P1在點(diǎn)A1上方),且△A1P1D1的兩個(gè)頂點(diǎn)恰好落在拋物線上?若存在,請(qǐng)求出點(diǎn)A1的橫坐標(biāo)m;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2(a≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)D(﹣2,﹣3)和點(diǎn)E(3,2),點(diǎn)P是第一象限拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求直線DE和拋物線的表達(dá)式;
(2)在y軸上取點(diǎn)F(0,1),連接PF,PB,當(dāng)四邊形OBPF的面積是7時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)點(diǎn)P在拋物線對(duì)稱軸的右側(cè)時(shí),直線DE上存在兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的上方),且MN=2,動(dòng)點(diǎn)Q從點(diǎn)P出發(fā),沿P→M→N→A的路線運(yùn)動(dòng)到終點(diǎn)A,當(dāng)點(diǎn)Q的運(yùn)動(dòng)路程最短時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A(1,a)和B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在x軸上,且△APC的面積為5,求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P在y軸上,是否存在點(diǎn)P,使△ABP是以AB為一直角邊的直角三角形?若存在,求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,過點(diǎn)A作直線EF.
(1)如圖甲,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(寫出兩種情況,不需要證明):① 或② ;
(2)如圖乙,AB是非直徑的弦,若∠CAF=∠B,求證:EF是⊙O的切線.
(3)如圖乙,若EF是⊙O的切線,CA平分∠BAF,求證:OC⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以邊AB為直徑的⊙O經(jīng)過點(diǎn)C,E是⊙O上的一點(diǎn),且∠BEC=45°.
(1)試判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若BE=8cm,sin∠BCE= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地高速鐵路建設(shè)成功,一列動(dòng)車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關(guān)系,下列說法:
①甲、乙兩地相距1800千米;
②點(diǎn)B的實(shí)際意義是兩車出發(fā)后4小時(shí)相遇;
③m=6,n=900;
④動(dòng)車的速度是450千米/小時(shí).
其中不正確的是( 。
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)F在DE的延長(zhǎng)線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結(jié)論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com