【題目】某口罩加工廠有兩組工人共人,組工人每人每小時可加工口罩只,組工人每人每小時可加工口罩只,兩組工人每小時一共可加工口罩只.

1)求兩組工人各多少人;

2)由于疫情加重兩組工人均提高了工作效率,一名組工人和一名組工人每小時共可生產(chǎn)口罩只,若兩組工人每小時至少加工只口罩,那么組工人每人每小時至少加工多少只口罩?

【答案】190人,60人;(2134

【解析】

1)設(shè)A組工人有x人、B組工人有(150-x)人,根據(jù)兩組工人每小時一共可加工口罩列方程即可得到結(jié)論;
2)設(shè)A組工人每人每小時加工a只口罩,則B組工人每人每小時加工(200-a)只口罩;根據(jù)兩組工人每小時至少加工只口罩列不等式即可得到結(jié)論.

設(shè)組工人有,組工人有人,

根據(jù)題意得,

解得:

:組工人有,組工人有;

設(shè)組工人每人每小時加工只口罩,組工人每人每小時加工只口罩;

根據(jù)題意得,

解得:

因?yàn)?/span>為正整數(shù),所以

:組工人每人每小時至少加工只口罩.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn).

1)求反比例函數(shù)的表達(dá)式;

2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點(diǎn)為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+b的圖象經(jīng)過點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1

1)求k、b的值;

2)請直接寫出不等式kx+b3x0的解集.

3)若點(diǎn)Dy軸上,且滿足SBCD2SBOC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“只要人人都獻(xiàn)出一點(diǎn)愛,世界將變成美好的人間”,在新型肺炎疫情期間,全國人民萬眾一心,眾志成城,共克時艱.某社區(qū)積極發(fā)起“援鄂捐款”活動倡議,有2500名居民踴躍參與獻(xiàn)愛心.社區(qū)管理員隨機(jī)抽查了部分居民捐款情況,統(tǒng)計圖如圖:

1)計算本次共抽查居民人數(shù),并將條形圖補(bǔ)充完整;

2)根據(jù)統(tǒng)計情況,請估計該社區(qū)捐款20元以上(含20元)的居民有多少人?

3)該社區(qū)有1名男管理員和3名女管理員,現(xiàn)要從中隨機(jī)挑選2名管理員參與“社區(qū)防控”宣講活動,請用列表法或樹狀圖法求出恰好選到“11女”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB1,對角線ACBD相交于點(diǎn)O,∠COD60°,點(diǎn)E是線段CD上一點(diǎn),連接OE,將線段OE繞點(diǎn)O逆時針旋轉(zhuǎn)60°得到線段OF,連接DF

1)求證:DFCE

2)連接EFOD于點(diǎn)P,求DP的最大值;

3)如圖2,點(diǎn)E在射線CD上運(yùn)動,連接AF,在點(diǎn)E的運(yùn)動過程中,若AFAB,求OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形折疊,使頂點(diǎn)邊上的一點(diǎn)重合(不與端點(diǎn),重合),折痕交于點(diǎn),交于點(diǎn),邊折疊后與邊交于點(diǎn),設(shè)正方形的周長為,的周長為,則的值為(

A.B.C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè))

1)求拋物線的頂點(diǎn)坐標(biāo)(用含的代數(shù)式表示);

2)求線段AB的長;

3)拋物線與軸交于點(diǎn)C(點(diǎn)C不與原點(diǎn)重合),若的面積始終小于的面積,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)E在射線OA上,點(diǎn)F在射線OB 上,AOBO,EM平分∠AEFFM平分∠BFE,則tanEMF的值為( )

A.B.C.1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,拋物線yx2+3xa2+a+2a1)的圖象交x軸于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為E

1)如圖1,求線段AB的長度(用含a的式子表示)及拋物線的對稱軸;

2)如圖2,當(dāng)拋物線的圖象經(jīng)過原點(diǎn)時,在平面內(nèi)是否存在一點(diǎn)P,使得以A、B、EP為頂點(diǎn)的四邊形能否成為平行四邊形?如果能,求出P點(diǎn)坐標(biāo);如果不能,請說明理由;

3)如圖3,當(dāng)a3時,若M點(diǎn)為x軸上一動點(diǎn),連結(jié)MC,將線段MC繞點(diǎn)M逆時針旋轉(zhuǎn)90°得到線段MN,連結(jié)AC、CNAN,則△ACN周長的最小值為多少?

查看答案和解析>>

同步練習(xí)冊答案