【題目】將正整數(shù)12018按一定的規(guī)律排成下圖所示的10列,規(guī)定從上到下依次為1行、2行、3,從左到右依次為第1列至第10列.

1)數(shù)2018   行,   列;

2)把圖中帶陰影的3個(gè)方相當(dāng)作一個(gè)整體平移,設(shè)被框住的3個(gè)數(shù)中,最大的一個(gè)數(shù)為x

①求被框住的三個(gè)數(shù)的和(用含x的式子表示);

②被框住的三個(gè)數(shù)的和能否于2017?若能,求出x的值;若不能,請(qǐng)說明理由.

【答案】1202,8;(2)①3x20,②能,被框住的三個(gè)數(shù)的和能等于2017x679

【解析】

1)用2018除以10即可得出答案;

2)①先根據(jù)圖表將另外兩個(gè)數(shù)用x表示出來,再求和即可;

②令①的式子等于2017,根據(jù)所求出的整數(shù)x的值即可得出答案.

1

則按題中圖表可知,2018在第202行第8

故答案為:202,8;

2)①根據(jù)圖表可得,其他兩個(gè)數(shù)為

則三個(gè)數(shù)的和為;

②令

解方程,得

又因

則數(shù)字679在第68行第9列,符合題意

答:被框住的三個(gè)數(shù)的和能等于2017,此時(shí)x的值為679.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,,,邊上任意一點(diǎn),邊一動(dòng)點(diǎn),分別以為邊作等邊三角形和等邊三角形,連接.

1)試探索的位置關(guān)系,并證明;

2)如圖(2)當(dāng)延長(zhǎng)線上任意一點(diǎn)時(shí),(1)中的結(jié)論是否成立?請(qǐng)說明理由;

3)如圖(3)在中,,延長(zhǎng)線上一點(diǎn),邊一動(dòng)點(diǎn),分別以為邊作等腰三角形和等腰三角形,使得,連接.要使(1)中的結(jié)論依然成立,還需要添加怎樣的條件?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,平分

1)說明:;(2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春雨初歇,綠意蔥蘢,重慶南開(融僑)中學(xué)初2020級(jí)舉行了春天的贊禮為主題的合唱比賽,各班演唱歌曲的曲風(fēng)有:青春舞曲、經(jīng)典名曲、動(dòng)漫神曲、勵(lì)志金曲四種類型,為了了解同學(xué)們對(duì)各種曲風(fēng)的喜愛程度。校學(xué)生處對(duì)大眾評(píng)委喜愛的歌曲曲風(fēng)進(jìn)行了調(diào)查,(A喜愛青春舞曲、B喜愛經(jīng)典名曲、C喜愛動(dòng)漫神曲、D喜愛勵(lì)志金曲),先根據(jù)調(diào)查得到如下圖不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息完成下列問題:

扇形統(tǒng)計(jì)圖中C喜愛動(dòng)漫神曲對(duì)應(yīng)扇形圓心角為1度,并補(bǔ)全條形統(tǒng)計(jì)圖.

在此次比賽中,甲班演唱的《四季問候》和乙班演唱的《東方之珠》獲得一等獎(jiǎng),《司機(jī)問候》由2名男生和2名女生領(lǐng)唱,《東方之珠》由1名男生和2名女生領(lǐng)唱,校學(xué)生處打算分別從這兩首歌曲的領(lǐng)唱中任意選取1名同學(xué)參加校合唱團(tuán),請(qǐng)用畫樹狀圖或列表的方法求出恰好選到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩實(shí)數(shù)ab,M=+,N=2ab

1)請(qǐng)判斷MN的大小,并說明理由。

2)請(qǐng)根據(jù)(1)的結(jié)論, + +3的最小值(其中x,y均為正數(shù))

3)請(qǐng)判斷++abacbc的正負(fù)性(a,b,c為互不相等的實(shí)數(shù))

4)若n為正整數(shù),則(n+1)(n+4)(n2+5n+4的值為某一個(gè)整數(shù)的平方,試說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫一個(gè)面積為10的正方形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)三角形,使三角形三邊長(zhǎng)分別為2、、
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;

(2)求建筑物CD的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,①四邊形ABCD是平行四邊形,線段EF分別交AD、AC、BC于點(diǎn)E、O、F,②EF⊥AC,③AO=CO.

(1)求證:四邊形AFCE是平行四邊形;

(2)在本題①②③三個(gè)已知條件中,去掉一個(gè)條件,(1)的結(jié)論依然成立,這個(gè)條件是 (直接寫出這個(gè)條件的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC.延長(zhǎng)BC到點(diǎn)D,使CD=CA,連接AD交⊙O于點(diǎn)E.

(1)求證:△ABE≌△CDE;

(2)填空:

①當(dāng)∠ABC的度數(shù)為 時(shí),四邊形AOCE是菱形;

②若AE=6,BE=8,則EF的長(zhǎng)為 .

查看答案和解析>>

同步練習(xí)冊(cè)答案