【題目】1)如圖1,上一點,若,,求證:

2)如圖2,中,上一點,上一點,,,,求

3)如圖,在四邊形中,,,,,直接寫出的長.

【答案】(1)證明見解析;(2);(3

【解析】

1)根據(jù)相似三角形的判定,可證得,根據(jù)相似三角形的性質(zhì)可得,再利用兩邊對應成比例且夾角相等這個判定就可證得;

2)根據(jù)可以設,由可得,根據(jù)相似的性質(zhì)進而表示出BP的長,由(1)中的結論CB=CD可證得,進而可得,根據(jù)相似的性質(zhì)即可求出答案;

3)過點AADAE,與DC的延長線交于E點,根據(jù)兩邊成比例且夾角相等可證得,根據(jù)相似的性質(zhì)可得BE的長,進而得出,由勾股定理可求出DE的長,再由30°直角三角形的性質(zhì)即可求出AD的長.

1)證明:∵,

,

,即,

又∵,

2)作,過點作延長線于,

,

∴設,

,

∴∠BPC=ACB=90°

∴∠B+BCP=90°,∠ACP+BCP=90°,

∴∠ACP=B

,

,

,

,

由(1)得,

,

,

,

,

,

3)過點AADAE,與DC的延長線交于E點,如圖,

ADAE,∠BAC=90°

∴∠BAC=EAD=90°,

∴∠BAE=CAD,

,

∴∠ABC=AED=30°,

,

,

,

,∠AEB=60°,

在△BED中,由勾股定理得,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點,且與x軸交于點C,點A的坐標為(2,1).

(1)求m及k的值;

(2)求點C的坐標,并結合圖象寫出不等式組0<x+m≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD 中,對角線 AC BD 相交于點 O ,點 E , F 分別為 OB OD 的中點,延長 AE G ,使 EG AE ,連接 CG

1)求證: ABE≌△CDF ;

2)當 AB AC 滿足什么數(shù)量關系時,四邊形 EGCF 是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,EBC邊上一點,FDE上一點,若∠B=∠AFE,AB=AF

求證:(1△ADF≌△DEC.(2BE=EF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形沿對折,使重合,折痕,連,若,,上一個動點,則的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的高速發(fā)展,人們的支付方式發(fā)生了巨大改變,某學習小組抽樣調(diào)查了春節(jié)期間某商場顧客的支付方式,主要有現(xiàn)金支付、銀聯(lián)卡支付和手機支付,調(diào)查得知使用這三種支付的人數(shù)比為,手機支付已成為市民購物便捷支付方式.手機支付主要有以下三種方式:~支付寶,~微信,~其他.現(xiàn)將使用手機支付方式人數(shù)的調(diào)查結果繪制成如下不完整的統(tǒng)計圖.

1)扇形統(tǒng)計圖中,________;請補全條形統(tǒng)計圖;

2)若該商場春節(jié)期間共20000人購物,請估計用支付寶進行支付的人數(shù).

3)經(jīng)調(diào)查某天顧客現(xiàn)金支付、銀聯(lián)卡支付、手機支付每筆交易發(fā)生的平均金額分別為120元、260元、80元,求這天顧客每筆交易的平均金額.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在近期抗疫期間,某藥店銷售AB兩種型號的口罩,已知銷售800A型和450B型的利潤為210元,銷售400A型和600B型的利潤為180元.

(1)求每只A型口罩和B型口罩的銷售利潤;

(2)該藥店計劃一次購進兩種型號的口罩共2000只,其中B型口罩的進貨量不超過A型口罩的3倍,設購進A型口罩x只,這2000只口罩的銷售總利潤為y元.

①求y關于x的函數(shù)關系式;

②該藥店購進A型、B型口罩各多少只,才能使銷售總利潤最大?

3)在銷售時,該藥店開始時將B型口罩提價100%,當收回成本后,為了讓利給消費者,決定把B型口罩的售價調(diào)整為進價的15%,求B型口罩降價的幅度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將半徑為,圓心角為120°的扇形繞點逆時針旋轉(zhuǎn)60°,點,的對應點分別為,連接,則圖中陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+ca≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(1,0),則①二次函數(shù)的最大值為a+b+c;②ab+c0;③b24ac0;④當y0時,﹣1x3,其中結論正確的有(

A.①③B.①④C.①②D.①③④

查看答案和解析>>

同步練習冊答案