【題目】在平行四邊形ABCD中,E是BC邊上一點(diǎn),F是DE上一點(diǎn),若∠B=∠AFE,AB=AF.
求證:(1)△ADF≌△DEC.(2)BE=EF.
【答案】(1)見解析;(2)見解析
【解析】
(1)根據(jù)平行四邊形的性質(zhì)可得DC=AB,AD=BC,AB∥CD,然后再證明AF=DC,∠ADF=∠DEC,∠AFD=∠C,利用AAS可判定△ADF≌△DEC;
(2)根據(jù)全等三角形的性質(zhì)得出AD=DE,DF=EC,再證出BC=DE,即可得出結(jié)論.
(1)證明:∵四邊形ABCD是平行四邊形,
∴DC=AB,AD=BC,AB∥CD,
∴∠ADF=∠DEC,∠B+∠C=180°,
∵∠AFE+∠AFD=180°,∠B=∠AFE,
∴∠AFD=∠C,
∵AB=AF,
∴AF=DC,
在△ADF和△DEC中
,
∴△ADF≌△DEC(AAS);
(2)證明:∵△ADF≌△DEC,
∴AD=DE,DF=EC,
又∵AD=BC,
∴BC=DE,
∴BC-EC=DE-DF,
即BE=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片ABCD中,∠A=60°,將紙片折疊,點(diǎn)A,D分別落在點(diǎn),處,且經(jīng)過點(diǎn)B,EF為折痕,當(dāng)⊥CD時(shí),的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)A(0,2)為圓心,2為半徑的圓交y軸于點(diǎn)B.已知點(diǎn)C(2,0),點(diǎn)D為⊙A上的一動(dòng)點(diǎn),以CD為斜邊,在CD左側(cè)作等腰直角三角形CDE,連結(jié)BC,則△BCE面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=2,BC=8,按下列步驟作圖:
①以點(diǎn)A為圓心,適當(dāng)?shù)拈L度為半徑作弧,分別交AB,AC于點(diǎn)E,F,再分別以點(diǎn)E,F為圓心,大于EF的長為半徑作弧相交于點(diǎn)H,作射線AH;
②分別以點(diǎn)A,B為圓心,大于AB的長為半徑作弧相交于點(diǎn)M,N,作直線MN,交射線AH于點(diǎn)O;
③以點(diǎn)O為圓心,線段OA長為半徑作圓.
則⊙O的半徑為( )
A.2B.10C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在籃球比賽中,東東投出的球在點(diǎn)A處反彈,反彈后球運(yùn)動(dòng)的路線為拋物線的一部分(如圖1所示建立直角坐標(biāo)系),拋物線頂點(diǎn)為點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式.
(2)當(dāng)球運(yùn)動(dòng)到點(diǎn)C時(shí)被東東搶到,CD⊥x軸于點(diǎn)D,CD=2.6m.
①求OD的長.
②東東搶到球后,因遭對(duì)方防守?zé)o法投籃,他在點(diǎn)D處垂直起跳傳球,想將球沿直線快速傳給隊(duì)友華華,目標(biāo)為華華的接球點(diǎn)E(4,1.3).東東起跳后所持球離地面高度h1(m)(傳球前)與東東起跳后時(shí)間t(s)滿足函數(shù)關(guān)系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在點(diǎn)F(1.5,0)處攔截,他比東東晚0.3s垂直起跳,其攔截高度h2(m)與東東起跳后時(shí)間t(s)的函數(shù)關(guān)系如圖2所示(其中兩條拋物線的形狀相同).東東的直線傳球能否越過小戴的攔截傳到點(diǎn)E?若能,東東應(yīng)在起跳后什么時(shí)間范圍內(nèi)傳球?若不能,請(qǐng)說明理由(直線傳球過程中球運(yùn)動(dòng)時(shí)間忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)居民節(jié)水意識(shí),我市自來水公司采用以戶為單位分段計(jì)費(fèi)辦法收費(fèi),即每月用水不超過10噸,每噸收費(fèi)元;若超過10噸,則10噸水按每噸元收費(fèi),超過10噸的部分按每噸元收費(fèi),公司為居民繪制的水費(fèi)(元)與當(dāng)月用水量(噸)之間的函數(shù)圖象如下,則下列結(jié)論錯(cuò)誤的是( )
A.
B.
C.若小明家3月份用水14噸,則應(yīng)繳水費(fèi)23元
D.若小明家7月份繳水費(fèi)30元,則該用戶當(dāng)月用水噸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,為上一點(diǎn),若,,求證:.
(2)如圖2,中,,為上一點(diǎn),為上一點(diǎn),,,,求.
(3)如圖,在四邊形中,,,,,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,菱形的邊軸,直線與軸交于點(diǎn),與反比例函數(shù)圖象交于點(diǎn)和點(diǎn),,.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的平行線,當(dāng)被這條平行線分成面積相等的兩部分時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),點(diǎn)是反比例函數(shù)上的點(diǎn),過點(diǎn)作直線,直線交軸的正半軸于點(diǎn),點(diǎn)的坐標(biāo)為.設(shè)三角形的面積為,且.
(1)當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)若,求反比例函數(shù)的解析式;
(3)在(2)的結(jié)論下,設(shè)反比例函數(shù)上的一動(dòng)點(diǎn),是小于20的整數(shù),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com