【題目】如圖,直線ABCD相交于點O,OP是∠BOC的平分線,EOAB于點O,F(xiàn)OCD于點O.

(1)圖中除直角外,還有其他相等的角,請寫出兩對:①______________;______________.

(2)如果∠AOD=40°,那么:

①根據(jù)__________,可得∠BOC=________;

②求∠POF的度數(shù).

【答案】(1)答案不唯一,如①∠COE=∠BOF,②∠COP=∠BOP等;(2)①對頂角相等 40°;②70°.

【解析】

1)根據(jù)角平分線的性質(zhì)和對頂角來填空;
(2)①根據(jù)對頂角相等可得∠BOC的度數(shù);
②根據(jù)垂直的定義求得∠POF的度數(shù).

解:(1)答案不唯一,如①∠COEBOF

②∠COPBOP

(2)①對頂角相等 40°

②因為OP平分∠BOC,

所以∠POCBOC×40°=20°,

所以∠POF=90°-POC=90°-20°=70°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】媽媽要榨果汁,她有蘋果、橙子、雪梨三種水果,且其顆數(shù)比為 9:7:6, 她榨完果汁后,蘋果、橙子、雪梨的顆數(shù)比變?yōu)?/span> 6:3:4,已知媽媽榨果汁時沒有使用雪梨, 小明根據(jù)他的發(fā)現(xiàn)利用所學(xué)的數(shù)學(xué)知識推斷出媽媽榨果汁時只使用了橙子,媽媽告訴小明他的推斷是完全正確的。請你嘗試寫出小明的推斷過程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線 l1 經(jīng)過點 A(5,0)和點 B(,﹣5)

(1)求直線 l1 的表達式;

(2)設(shè)直線 l2 的解析式為 y=﹣2x+2,且 l2 x 軸交于點 D,直線 l1 l2 于點 C, △CAD 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F,∠A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線AB上一點O為端點作射線OC,使∠BOC=60°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=   °;

(2)如圖2,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線;

(3)如圖3,將三角板DOE繞點O逆時針轉(zhuǎn)動到某個位置時,若恰好∠COD=AOE,求∠BOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,DBA延長線上一點,AE∠DAC的平分線,PAE上的一點(點P不與點A重合),連接PB,PC.通過觀察,測量,猜想PB+PCAB+AC之間的大小關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖示,AB∥CD,且點E在射線ABCD之間,請說明∠AEC=∠A+∠C的理由.

(2)現(xiàn)在如圖b示,仍有AB∥CD,但點EABCD的上方,請嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提倡全民健身活動, 某社區(qū)準備購買羽毛球和羽毛球拍供社區(qū)居民使用, 某體育用品商店羽毛球每盒 10 元, 羽毛球拍每副 40 .該商店有兩種優(yōu)惠方案,方案一: 不購買會員卡時, 羽毛球享受 8.5 折優(yōu)惠, 羽毛球拍購買 5 副(含5 副) 以上才能享受 8.5 折優(yōu)惠, 5 副以下必須按定價購買;方案二: 每張會員卡 20 元, 辦理會員卡時, 全部商品享受 8 折優(yōu)惠設(shè)該社區(qū)準備購買羽毛球拍 6 副, 羽毛球盒, 請回答下列問題:

(1)如果一位體育愛好者按方案一只購買了 4 副羽毛球拍,求他購買時所需要的費用;

(2)用含的代數(shù)式分別表示該社區(qū)按方案一和方案二購買所需要的錢數(shù);

(3)①直接寫出一個的值, 使方案一比方案二優(yōu)惠;

直接寫出一個的值, 使方案二比方案一優(yōu)惠

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B、C、D分別在正方形網(wǎng)格的格點上,其中A點的坐標為(﹣1,5),B點的坐標為(3,3),小明發(fā)現(xiàn),線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點旋轉(zhuǎn)一個角度可以得到另一條線段,則這個旋轉(zhuǎn)中心的坐標是_____

查看答案和解析>>

同步練習(xí)冊答案