【題目】感知:如圖1,在ABC中,∠ABC=42°,ACB=72°,點(diǎn)DAB上一點(diǎn),EAC上一點(diǎn),BECD相交于點(diǎn)F.

(1)若∠ACD=35°,ABE=20°,求∠BFC的度數(shù);

(2)若CD平分∠ACB,BE平分∠ABC,求∠BFC的度數(shù);

探究:如圖2,在ABC中,BE平分∠ABC,CD平分∠ACB,寫出∠BFC與∠A之間的數(shù)量關(guān)系,并說明理由;

應(yīng)用:如圖3,在ABC中,BD平分∠ABCCD平分外角∠ACE,請(qǐng)直接寫出∠BDC與∠A之間的數(shù)量關(guān)系.

【答案】(1)121°;(2)∠BFC=90°+A,證明見解析;(3)BDCA.

【解析】分析:(1)、根據(jù)△ABC的內(nèi)角和定理得出∠A的度數(shù),然后根據(jù)∠BEC=∠A+∠ABE得出答案;(2)、根據(jù)角平分線的性質(zhì)得出∠ABEABC,∠ACDACB,最后根據(jù)三角形外角的性質(zhì)以及三角形內(nèi)角和定理得出答案;(3)、根據(jù)三角形外角的性質(zhì)以及三角形內(nèi)角和定理得出答案.

詳解:(1)、∵在ABC中,∠ABC+∠ACB+∠A180°,又∵∠ABC42°,∠ACB72°,

∴∠A66°, ∵∠BEC=∠A+∠ABE20°66°86°,

又∵∠BFC=∠ACD+∠BEC35°86°121°;

(2)、結(jié)論:∠BFC90°A,

證明:∵BE平分∠ABC,CD平分∠ACB, ∴∠ABEABC,∠ACDACB,

∵∠BEC=∠A+∠ABE,∠BFC=∠ACD+∠BEC, ∴∠BFC=∠A+∠ACD+∠ABE,

∴∠BFC=∠AABCACB, ∵∠A+∠ABC+∠ACB180°,

∴∠BFC90°A;

3)∠BDCA.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC, 中,DBC的中點(diǎn),DEBCCEAD,若 ,求四邊形ACEB的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=,BE=5.

①求證: ②求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)y=2x+4與x軸,y軸分別相交于A,B兩點(diǎn),一次函數(shù)圖象與坐標(biāo)軸圍成的△ABO,我們稱它為此一次函數(shù)的坐標(biāo)三角形.把坐標(biāo)三角形面積分成相等的二部分的直線叫做坐標(biāo)三角形的等積線.

(1)求此一次函數(shù)的坐標(biāo)三角形周長(zhǎng)以及過點(diǎn)A的等積線的函數(shù)表達(dá)式;

(2)如圖2,我們把第一個(gè)坐標(biāo)三角形△ABO記為第一代坐標(biāo)三角形.第一代坐標(biāo)三角形的等積線BA1,AB1記為第一對(duì)等積線,它們交于點(diǎn)O1,四邊形A1OB1O1稱為第一個(gè)坐標(biāo)四邊形.求點(diǎn)O1的坐標(biāo)和坐標(biāo)四邊形A1OB1O1面積;

(3)如圖3.第一對(duì)等積線與坐標(biāo)軸構(gòu)成了第二代坐標(biāo)三角形△BA1O.△AOB1分別過點(diǎn)A,B作一條平分△BA1O,△AOB1面積的第二對(duì)等積線BA2,AB2,相交于點(diǎn)O2,如此進(jìn)行下去.…,請(qǐng)直接寫出On的坐標(biāo)和第n個(gè)坐標(biāo)四邊形面積(用n表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、C、D都在半徑為6的⊙O上,過點(diǎn)C作AC∥BD交OB的延長(zhǎng)線于點(diǎn)A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求弦BD的長(zhǎng);
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰三角形,點(diǎn)D是底邊BC上異于BC中點(diǎn)的一個(gè)點(diǎn),∠ADE=∠DAC,DE=AC.運(yùn)用這個(gè)圖(不添加輔助線)可以說明下列哪一個(gè)命題是假命題?(
A.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形
B.有一組對(duì)邊平行的四邊形是梯形
C.一組對(duì)邊相等,一組對(duì)角相等的四邊形是平行四邊形
D.對(duì)角線相等的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=CB,ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.

(1)求證:RtABERtCBF;

(2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC沿直線l向右移了3厘米,得FDE,且BC6厘米,∠B40°.

(1)BE

(2)求∠FDB的度數(shù);

(3)找出圖中相等的線段(不另添加線段);

(4)找出圖中互相平行的線段(不另添加線段)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,OEABOFACOE=OF

(1)如圖,當(dāng)點(diǎn)OBC邊中點(diǎn)時(shí),試說明AB=AC;

(2)如圖,當(dāng)點(diǎn)O在△ABC內(nèi)部時(shí),且OB=OC,試說明ABAC的關(guān)系;

(3)當(dāng)點(diǎn)O在△ABC外部時(shí),且OB=OC,試判斷ABAC的關(guān)系.(畫出圖形,寫出結(jié)果即可,無須說明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案