【題目】(1)操作:如圖,在已知內(nèi)角度數(shù)的三個(gè)三角形中,請(qǐng)用直尺從某一頂點(diǎn)畫一條線段,把原三角形分割成兩個(gè)等腰三角形,并在圖中標(biāo)注相應(yīng)的角的度數(shù)
(2)拓展,△ABC中,AB=AC,∠A=45°,請(qǐng)把△ABC分割成三個(gè)等腰三角形,并在圖中標(biāo)注相應(yīng)的角的度數(shù).
(3)思考在如圖所示的三角形中∠A=30°.點(diǎn)P和點(diǎn)Q分別是邊AC和BC上的兩個(gè)動(dòng)點(diǎn).分別連接BP和PQ把△ABC分割成三個(gè)三角形.△ABP,△BPQ,△PQC若分割成的這三個(gè)三角形都是等腰三角形,求∠C的度數(shù)所有可能值直接寫出答案即可.
【答案】(1)見解析;(2)見解析;(3)∠C所有可能的值為10°、20°、25°,35°、40°、50°、80°、100°.
【解析】
(1)在圖1、圖2、圖3中,分別作AB、AB、BC的垂直平分線,根據(jù)垂直平分線的性質(zhì)及外角的性質(zhì)求出各角度數(shù)即可;(2)分別作AB、BC的垂直平分線,交于點(diǎn)O,連接OA、OB、OC可得三角形OAB、OAC、OBC為等腰三角形,根據(jù)等腰三角形的性質(zhì)及外角性質(zhì)求出各角度數(shù)即可;(3)分PB=PA、AB=AP、BA=BP時(shí),PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10種情況,根據(jù)等腰三角形的性質(zhì)分別求出∠C的度數(shù)即可.
(1)在圖1、圖2、圖3中,分別作AB、AB、BC的垂直平分線,
如圖1,∵∠ABC=23°,∠BAC=90°,
∴∠C=90°-23°=67°,
∵MN垂直平分AB,
∴BD=AD,
∴△ABD是等腰三角形,
∴∠BAD=∠ABC=23°,
∴∠ADC=2∠ABC=46°,
∵∠BAC=90°,
∴∠DAC=∠BAC-∠BAD=67°,
∴∠DAC=∠C,
∴△DAC是等腰三角形,
同理:圖2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,
圖3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.
(2)作AB、BC的垂直平分線,交于點(diǎn)O,連接OA、OB、OC,
∵點(diǎn)O是三角形垂直平分線的交點(diǎn),
∴OA=OB=OC,
∴△OAB、△OAC、△OBC是等腰三角形,
∵AB=AC,∠BAC=45°,
∴∠ABC=∠ACB=67.5°,
∴AD是BC的垂直平分線,
∴∠BAD=∠CAD=22.5°,
∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,
∴∠OBC=∠OCB=45°.
(3)①如圖,當(dāng)PB=PA,PB=PQ,PQ=CQ時(shí),
∵∠A=30°,PB=PQ,
∴∠ABP=∠A=30°,
∴∠APB=120°,
∵PB=PQ,PQ=CQ,
∴∠PQB=∠PBQ,∠C=∠CPQ,
∴∠PBQ=2∠C,
∴∠APB=∠PBQ+∠C=3∠C=120°,
解得:∠C=40°.
②如圖,當(dāng)PB=PA,PB=BQ,PQ=CQ時(shí),
∴∠PQB=2∠C,∠PQB=∠BPQ,
∴∠PBQ=180°-2∠PQB=180°-4∠C,
∴180°-4∠C+∠C=120°,
解得:∠C=20°,
③如圖,當(dāng)PA=PB,BQ=PQ,CQ=CP時(shí),
∵∠PQC=2∠PBQ,∠PQC=(180°-∠C),
∴∠PBQ=(180°-∠C),
∴(180°-∠C)+∠C=120°,
解得:∠C=100°.
④如圖,當(dāng)PA=PB,BQ=PQ,PQ=CP時(shí),
∵∠PQC=∠C=2∠PBQ,
又∵∠C+∠PBQ=120°,
∴∠C=80°;
⑤如圖,當(dāng)AB=AP,BP=BQ,PQ=QC時(shí),
∵∠A=30°,
∴∠APB=(180°-30°)=75°,
∵BP=BQ,PQ=CQ,
∴∠BPQ=∠BQP,∠QPC=∠QCP,
∴∠BQP=2∠C,
∴∠PBQ=180°-4∠C,
∴∠C+180°-4∠C=75°,
解得:∠C=35°.
⑥如圖,當(dāng)AB=AP,BQ=PQ,PC=QC時(shí),
∴∠PQC=2∠PBC,∠PQC=(180°-∠C),
∴∠PBC=(180°-∠C),
∴(180°-∠C)+∠C=75°,
解得:∠C=40°.
⑦如圖,當(dāng)AB=AP,BQ=PQ,PC=QP時(shí),
∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,
∴∠C=50°;
⑧當(dāng)AB=AP,BP=PQ,PQ=CQ時(shí),
∵AB=BP,∠A=30°,
∴∠ABP=∠APB=75°,
又∵∠PBQ=∠PQB=2∠C,
且有∠PBQ+∠C=180°-30°-75°=75°,
∴3∠C=75°,
∴∠C=25°;
⑨當(dāng)AB=BP,BP=PQ,PQ=CQ時(shí),
∵AB=BP,
∴∠BPA=∠A=30°,
∵∠PBQ=∠PQB=2∠C,
∴2∠C+∠C=30°,
解得:∠C=10°.
⑩當(dāng)AB=BP,BQ=PQ,PQ=CQ時(shí),
∴∠PQC=∠C=2∠PBQ,
∴∠C+∠C=30°,
解得:∠C=20°.
綜上所述:∠C所有可能的值為10°、20°、25°,35°、40°、50°、80°、100°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,邊OA、OC分別在x軸、y軸的正半軸上,點(diǎn)B、P都在函數(shù)y=(x>0)的圖象上,過動(dòng)點(diǎn)P分別作軸x、y軸的平行線,交y軸、x軸于點(diǎn)D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點(diǎn)P的橫坐標(biāo)為m.
(1)求k的值;
(2)用含m的代數(shù)式表示CD的長(zhǎng);
(3)求S與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長(zhǎng)MF為0.5米,量得電線桿AB落在地上的影子BD長(zhǎng)3米,落在墻上的影子CD的高為2米.你能利用小明測(cè)量的數(shù)據(jù)算出電線桿AB的高嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E 是 BC 的中點(diǎn),DE 平分∠ADC.
(1)如圖 1,若∠B=∠C=90°,求證:AE 平分∠DAB;
(2)如圖 2,若 DE⊥AE,求證:AD=AB+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=2x+4,
(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象.
(2)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo).
(3)利用圖象直接寫出:當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C,連接AA1,若∠AA1B1=15°,則∠B的度數(shù)是( )
A. 75° B. 60° C. 50° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長(zhǎng)是9.其中,正確結(jié)論的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊斜邊長(zhǎng)相等的等腰直角三角板按如圖①擺放,斜邊AB分別交CD,CE于M,N點(diǎn).
(1)如果把圖①中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖②,求證:△CMF≌△CMN;
(2)將△CED繞點(diǎn)C旋轉(zhuǎn),則:
①當(dāng)點(diǎn)M,N在AB上(不與點(diǎn)A,B重合)時(shí),線段AM,MN,NB之間有一個(gè)不變的關(guān)系式,請(qǐng)你寫出這個(gè)關(guān)系式,并說明理由;
②當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長(zhǎng)線上(如圖③)時(shí),①中的關(guān)系式是否仍然成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是內(nèi)一點(diǎn),且,,,則等于( )
A. 105° B. 120° C. 135° D. 150°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com