【題目】地向地打長途電話,按時收費,3分鐘內(nèi)收費2.7元,3分鐘后,每通話1分鐘收費1.2元.某人在地向地打電話共用了,且為整數(shù))分鐘,話費為元.

(1)寫出之間的函數(shù)關(guān)系式.

(2)若通話5分鐘,則需要話費多少元?

(3)若某次通話費用為8.7元,則他通話多少分鐘?

【答案】1;(2)通話5分鐘,則需要話費5.1元;(3)某次通話費用為8.7元,他通話8分鐘.

【解析】

1)根據(jù)題意,要列分段函數(shù)分3分鐘內(nèi)和三分鐘后兩種情況列函數(shù),即可得到關(guān)系式;

2)把x=5代入即可求出話費;

3)把y=8.7代入即可求出時間.

解:(1)根據(jù)題意,

當(dāng)時,;

當(dāng)時,;

;

2)當(dāng)x=5時,則有 (元);

3)當(dāng)y=8.7時,則有

解得:x=8;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是

A. BC=AC B. CFBF C. BD=DF D. AC=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:

1)表示﹣32兩點之間的距離是_____;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于|mn|

如果|a+2|3,那么a_____;

2)若數(shù)軸上表示數(shù)a的點位于﹣42之間,則|a+4|+|a2|的值為_____;

3)利用數(shù)軸找出所有符合條件的整數(shù)點x,使得|x+2|+|x5|7,這些點表示的數(shù)的和是_____;

4)當(dāng)a_____時,|a+3|+|a1|+|a4|的值最小,最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=4,射線BQAB互相垂直,點DAB上的一個動點,點E在射線BQ上,BEDB,作EFDE,并截取EFDE,連接AF并延長交射線BQ于點C.設(shè)BEx,BCy,則y關(guān)于x的函數(shù)解析式為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知b是最小的正整數(shù),且a、c滿足|a+1|+(c+62=0

1)填空:a=  b=  ,c=  

2a、b、c在數(shù)軸上所對應(yīng)的點分別為AB、C,P是數(shù)軸上點AB之間一動點(不與點A、B重合),其對應(yīng)的數(shù)為x,|x+1|+|x1|= ;

3)在(1)、(2)的條件下,點A、B、C開始在數(shù)軸上同時運動,若點C和點A分別以每秒6個單位長度和2個單位長度的速度向左運動,點B以每秒2個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點A與點C之間的距離表示為AC,點AB之間的距離表示為AB.請問:ACAB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一臺放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如右圖所示的幾何圖形,若顯示屏所在面的側(cè)邊AO與鍵盤所在面的側(cè)邊BO長均為24cm,點P為眼睛所在位置,DAO的中點,連接PD,當(dāng)PD?AO時,稱點P最佳視角點,作PC?BC,垂足COB的延長線上,且BC=12cm

1)當(dāng)PA=45cm時,求PC的長;

2)若?AOC=120°時,最佳視角點”P在直線PC上的位置會發(fā)生什么變化?此時PC的長是多少?請通過計算說明.(結(jié)果精確到0.1cm,可用科學(xué)計算器,參考數(shù)據(jù): ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:﹣4,|2|,﹣2,﹣(﹣3.5),0,

1)在如圖所示的數(shù)軸上表示出以上各數(shù);

2)比較以上各數(shù)的大小,用“<”號連接起來;

__________________________________

3)在以上各數(shù)中選擇恰當(dāng)?shù)臄?shù)填在圖中這兩個圈的(重疊)部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,,COD=60°.

(1)AOC是等邊三角形嗎?請說明理由;

(2)求證:OCBD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD、正方形A1B1C1D1、正方形A2B2C2D2均位于第一象限內(nèi),它們的邊平行于x軸或y軸,其中點A、A1A2在直線OM上,點C、C1C2在直線ON上,O為坐標(biāo)原點,已知點A的坐標(biāo)為(3,3),正方形ABCD的邊長為1.若正方形A2B2C2D2的邊長為2011,則點B2的坐標(biāo)為___________

查看答案和解析>>

同步練習(xí)冊答案