【題目】如圖,AB⊙O的直徑,ACDC為弦,∠ACD=60°,PAB延長線上的點,∠APD=30°

1)求證:DP⊙O的切線;

2)若⊙O的半徑為3cm,求圖中陰影部分的面積.

【答案】1)證明見解析;(2

【解析】試題分析:(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據切線判定推出即可;

2)求出OP、DP長,分別求出扇形DOB和三角形ODP面積,即可求出答案.

試題解析:(1)連接OD

∵∠ACD=60°,

由圓周角定理得:∠AOD=2∠ACD=120°,

∴∠DOP=180°﹣120°=60°,

∵∠APD=30°,

∴∠ODP=180°﹣30°﹣60°=90°,

∴OD⊥DP,

∵OD為半徑,

∴DP⊙O切線;

2∵∠P=30°,∠ODP=90°,OD=3cm

∴OP=6cm,由勾股定理得:DP=3cm

圖中陰影部分的面積S=SODP﹣S扇形DOB=×3×3cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我市某農場有A、B兩種型號的收割機共20臺,每臺A型收割機每天可收大麥100畝或者小麥80畝,每臺B型收割機每天可收大麥80畝或者小麥60畝,該農場現(xiàn)有19 000畝大麥和11 500畝小麥先后等待收割.先安排這20臺收割機全部收割大麥,并且恰好10天時間全部收完.

(1)問A、B兩種型號的收割機各多少臺?

(2)由于氣候影響,要求通過加班方式使每臺收割機每天多完成10%的收割量,問這20臺收割機能否在一周時間內完成全部小麥收割任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:兩個等腰直角三角形()邊長分別為ab)如圖放置在一起,連接AD,

1)求陰影部分()的面積

2)如果有一個點正好位于線段的中點,連接.得到,的面積

3)(2)中的三角形比(1)中的面積大還是小,大(。┒嗌?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2bxca≠0)的圖象經過點(-2,0),(x0,0),1x02,y軸的負半軸相交,且交點在(0,-2)的上方,下列結論

b0②2ab;③2ab10;④2ac0.其中正確結論是 _________填正確序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)省空間,家里的飯碗一般是豎直擺放的,如果只飯碗(形狀、大小相同)豎直擺放的高度為只飯碗豎直擺放的高度為.如圖所示,小穎家的碗櫥每格的高度為則一摞碗豎直放人櫥柜時,每格最多能放________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知ADBC,ABBC,CDDE,CD=EDAD=6,BC=9,則ADE的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點E,在BC上截取BF=AE,連接AF交CE于點G,連接DG交AC于點H,過點A作AN⊥BC,垂足為N,AN交CE于點M.則下列結論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的序號是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,在△ABC中,AB=AC,AB的垂直平分線交BC的延長線于E,交AC于F,

∠A=50°,AB+BC=16cm,則△BCF的周長和∠EFC分別為多少?

2(生活應用題)某公司對一批某一品牌的襯衣的質量抽檢結果如下表:

①從這批襯衣中任抽1件是次品的概率約為多少?

②如果銷售這批襯衣600件,那么至少需要準備多少件正品襯衣供買到次品的顧客調換?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下圖是這種幼樹在移植過程中成活情況的一組數(shù)據統(tǒng)計結果.下面三個推斷:①當移植棵數(shù)是1500時,該幼樹移植成活的棵數(shù)是1356,所以移植成活的概率是0904;②隨著移植棵數(shù)的增加,移植成活的頻率總在0880附近擺動,顯示出一定的穩(wěn)定性,可以估計這種幼樹移植成活的概率是0880;③若這種幼樹移植成活的頻率的平均值是0875,則移植成活的概率是0875.其中合理的是(

A. ①③B. ②③C. D.

查看答案和解析>>

同步練習冊答案