【題目】如圖1,直線AD對應的函數(shù)關系式為y=﹣2x﹣2,與拋物線交于點A(在x軸上),點D.拋物線與x軸另一交點為B(3,0),拋物線與y軸交點C(0,﹣6).
(1)求拋物線的解析式;
(2)如圖2,連結CD,過點D作x軸的垂線,垂足為點E,直線AD與y軸交點為F,若點P由點D出發(fā)以每秒1個單位的速度沿DE邊向點E移動,1秒后點Q也由點D出發(fā)以每秒3個單位的速度沿DC,CO,OE邊向點E移動,當其中一個點到達終點時另一個點也停止移動,點P的移動時間為t秒,當PQ⊥DF時,求t的值;(圖3為備用圖)
(3)如果點M是直線BC上的動點,是否存在一個點M,使△ABM中有一個角為45°?如果存在,直接寫出所有滿足條件的M點坐標;如果不存在,請說明理由.
【答案】(1)y=2x2﹣4x﹣6(2)當t=2時,有PQ⊥DF(3)點M(7,8),(,),( , ),( , )
【解析】試題分析:(1)求出點A坐標,把A、B、C三點代入拋物線解析式解方程組即可.
(2)分三種情形討論①當Q點在CD上時②點Q在CO上時③點Q在OE上時,利用相似三角形的性質路程方程求出t,并且判斷是否符合題意即可.
(3)分三種情況:①當∠MAB=45°且M在x軸上方時,則直線過A和P(0, 1),求出直線AP的解析式和直線AP與直線BC的交點即可;
②當∠MAB=45°且M在x軸下方時,則直線過A和Q(0,-1),類似可求M的坐標;
③若∠AMB=45°,過A作AP⊥BC于P,則△APM是等腰直角三角形,得到AP=PM.求出直線AP的解析式,然后求出直線AP和直線CB的交點P的坐標,由MP=AP,用兩點間的距離公式,列方程求解即可.
試題解析:解:(1)令y=0,則﹣2x﹣2=0,解得:x=﹣1,所以點A坐標(﹣1,0),設拋物線解析式為y=ax2+bx+c.∵A(﹣1,0)、B(3,0)、C(0,﹣6)在拋物線上,∴,解得:,∴拋物線解析式為y=2x2﹣4x﹣6.
(2)y=2x﹣2,令x=0,y=﹣2,∴F(0,﹣2),由解得或,∴點D坐標(2,﹣6).∵點C(0,﹣6),∴CD⊥CF,∴∠DCF=90°,由題意:P點移動的路程為DP=t,Q點移動的路程為3(t﹣1)=3t﹣3,當Q點在CD上時,即0<3t﹣3≤2時,1<t≤時,如圖1中,若PQ⊥DF,則有Rt△QDP∽Rt△FCD,
∴=,即=,∴t=3,3>,∴此時t不合題意.
當點Q在CO上時,2<3t﹣3≤8,<t≤時,如圖2中,過點P作PK⊥OC于K,
∴CK=PD=t,CQ=3(t﹣1)﹣2=3t﹣5,若PQ⊥DF,則有Rt△PKQ∽Rt△FCD,∴,即=,∴t=2.∵<t≤,∴t=2符合題意.
當點Q在OE上時,即8≤3t﹣3≤10,≤t≤時,如圖3中,
若PQ⊥DF,過點Q作QG∥DF交DE于G,則QG⊥QP,即∠GQP=90°,∴∠QPE>90°,這與△QPE內角和為180°矛盾,此時PQ不與DF垂直.
綜上所述:當t=2時,有PQ⊥DF.
(3)分三種情況討論:
①當∠MAB=45°且M在x軸上方時.∵A(-1,0)在y軸上取點P(0,1)直線AP交在線CB于M,則∠MAB=45°,如圖4.易求直線AP為y=x+1,易求直線BC的解析式為:y=2x-6,解方程組:,解得:,∴M(7,8);
②當∠MAB=45°且M在x軸下方時.在y軸上取點Q(0,-1)直線AQ交在線CB于M′,則∠M′AB=45°,類似可求M(,);
③若∠AMB=45°,過A作AP⊥BC于P,則△APM是等腰直角三角形,∴AP=PM.如圖5.∵AP⊥CB,∴直線AP為,解方程組:,解得:,∴P(,),∴AP==.設M(a,2a-6),則MP=AP,∴=,整理得:25a2-110a+57=0,∴(5a-19)(5a-3)=0,解得:a=或a=,∴M(,)或M′(,).
綜上所述:存在一個點M,使△ABM中有一個角為45°,M的坐標為:M(7,8)或(,)或(,)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,以BC為直徑的⊙O交AB于點D,AE平分∠BAC交BC于點E,交CD于點F.且CE=CF.
(1)求證:直線CA是⊙O的切線;
(2)若BD=DC,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,圖2中,正方形ABCD的邊長為6,點P從點B出發(fā)沿邊BC—CD以每秒2個單位長的速度向點D勻速運動,以BP為邊作等邊三角形BPQ,使點Q在正方形ABCD內或邊上,當點Q恰好運動到AD邊上時,點P停止運動。設運動時間為t秒(t≥0)。
(1)當t=2時,點Q到BC的距離=_____;
(2)當點P在BC邊上運動時,求CQ的最小值及此時t的值;
(3)若點Q在AD邊上時,如圖2,求出t的值;
(4)直接寫出點Q運動路線的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上的點A,O,B,C,D分別表示-3,0,2.5,5,-6.
(1)求B,O兩點間的距離;
(2)求A,D兩點間的距離;
(3)求C,B兩點間的距離;
(4)請觀察思考,若點A表示數(shù)m,且m<0,點B表示數(shù)n,且n>0,用含m,n的代數(shù)式表示A,B兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點D是正方形OABC的邊AB上的動點,OC=6.以AD為一邊在AB的右側作正方形ADEF,連結BF交DE于P點.
(1)請直接寫出點A、B的坐標;
(2)在點D的運動過程中,OD與BF是否存在特殊的位置關系?若存在,試寫出OD與BF的位置關系,并證明;若不存在,請說明理由.
(3)當P點為線段DE的三等分點時,試求出AF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蓮城超市以10元/件的價格調進一批商品,根據前期銷售情況,每天銷售量y(件)與該商品定價x(元)是一次函數(shù)關系,如圖所示.
(1)求銷售量y與定價x之間的函數(shù)關系式;
(2)如果超市將該商品的銷售價定為13元/件,不考慮其它因素,求超市每天銷售這種商品所獲得的利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則Sn的值為__.(用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個大正方形和四個全等的小正方形按圖①、②兩種方式擺放,設小正方形的邊長為x,請仔細觀察圖形回答下列問題.
(1)用含a、b的代數(shù)式表示x,則x=____.
(2)用含a、b的代數(shù)式表示大正方形的邊長____.(請將結果化為最簡)
(3)利用前兩問的結論求出圖②的大正方形中未被小正方形覆蓋部分的面積.(用a、b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)圖(1)是一個長為2m,寬為2n的矩形,把此矩形沿圖中虛線用剪刀均分為四個小長方形,然后按圖(2)的形狀拼成一個大正方形.請問:這兩個圖形的什么量不變?
(2)把所得的大正方形面積比原矩形的面積多出的陰影部分的面積用含m,n的代數(shù)式表示為(m-n)2或m2-2mn+n2 .
(3)由前面的探索可得出的結論是:在周長一定的矩形中,當 時,面積最大.
(4)若矩形的周長為24cm,則當邊長為多少時,該圖形的面積最大?最大面積是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com