【題目】建設環(huán)境優(yōu)美、文明和諧的新農村,某村村委會決定在村道兩旁種植A,B兩種樹木,需要購買這兩種樹苗1000棵.A,B兩種樹苗的相關信息如下表:
設購買A種樹苗x棵,綠化村道的總費用為y元.解答下列問題:
(1)寫出y(元)與x(棵)之間的函數(shù)關系式;
(2)若這批樹苗種植后成活了925棵,則綠化村道的總費用需要多少元?
(3)若綠化村道的總費用不超過31000元,則最多可購買B種樹苗多少棵?
【答案】(1)y=10x+35000(x≤1000);(2)總費用需要30000元;(3)最多可購買B種樹苗600棵.
【解析】
(1)設購買A種樹苗x棵,則購買B種樹苗(1000x)棵,根據(jù)總費用=(購買A種樹苗的費用+種植A種樹苗的費用)+(購買B種樹苗的費用+種植B種樹苗的費用),即可求出y(元)與x(棵)之間的函數(shù)關系式;
(2)根據(jù)這批樹苗種植后成活了925棵,列出關于x的方程,解方程求出此時x的值,再代入(1)中的函數(shù)關系式中即可計算出總費用;
(3)根據(jù)綠化村道的總費用不超過31000元,列出關于x的一元一次不等式,求出x的取值范圍,即可求解.
解:(1)設購買A種樹苗x棵,則購買B種樹苗(1000x)棵,由題意,得
y=(20+5)x+(30+5)(1000x)=10x+35000(x≤1000);
(2)由題意,可得0.90x+0.95(1000x)=925,
解得x=500.
當x=500時,y=10×500+35000=30000,
即綠化村道的總費用需要30000元;
(3)由(1)知購買A種樹苗x棵,B種樹苗(1000x)棵時,總費用y=10x+35000,
由題意,得10x+35000≤31000,
解得x≥400,
所以1000x≤600,
故最多可購買B種樹苗600棵.
科目:初中數(shù)學 來源: 題型:
【題目】有依次排列的3個數(shù):3,9,8,對任相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個數(shù)之間,可產生一個新數(shù)串:3,6,9,,8,這稱為第一次操作;做第二次同樣的操作后也可產生一個新數(shù)串:3,3,6,3,9,,,9,8,繼續(xù)依次操作下去,問:從數(shù)串3,9,8開始操作第一百次以后所產生的那個新數(shù)串的所有數(shù)之和是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平面直角坐標系中,已知點A(0,2),△AOB為等邊三角形,P是x軸負半軸上一個動點(不與原點O重合),以線段AP為一邊在其右側作等邊三角形△APQ.
(1)求點B的坐標;
(2)在點P的運動過程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大。喝绺淖,請說明理由;
(3)連接OQ,當OQ∥AB時,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)(k>0)的圖象經過BC邊的中點D(3,1).
(1)求這個反比例函數(shù)的表達式;
(2)若△ABC與△EFG成中心對稱,且△EFG的邊FG在y軸的正半軸上,點E在這個函數(shù)的圖象上.
①求OF的長;
②連接AF,BE,證明四邊形ABEF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店欲購進甲、乙兩種商品,已知甲的進價是乙的進價的一半,進3件甲商品和1件乙商品恰好用200元.甲、乙兩種商品的售價每件分別為80元、130元,該商店決定用不少于6710元且不超過6810元購進這兩種商品共100件.
(1)求這兩種商品的進價.
(2)該商店有幾種進貨方案?哪種進貨方案可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離A地的距離S(km)與時間t(h)的關系,結合圖像回答下列問題:
(1)表示乙離開A地的距離與時間關系的圖像是________(填);
甲的速度是__________km/h;乙的速度是________km/h。
(2)甲出發(fā)后多少時間兩人恰好相距5km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求知中學有一塊四邊形的空地ABCD,如下圖所示,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,問學校需要投入多少資金買草皮?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=6.
(1)求⊙O的面積;
(2)若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com