【題目】某商店欲購進(jìn)甲、乙兩種商品,已知甲的進(jìn)價是乙的進(jìn)價的一半,進(jìn)3件甲商品和1件乙商品恰好用200元.甲、乙兩種商品的售價每件分別為80元、130元,該商店決定用不少于6710元且不超過6810元購進(jìn)這兩種商品共100件.
(1)求這兩種商品的進(jìn)價.
(2)該商店有幾種進(jìn)貨方案?哪種進(jìn)貨方案可獲得最大利潤,最大利潤是多少?
【答案】(1)商品的進(jìn)價為40元,乙商品的進(jìn)價為80元.
(2)有三種進(jìn)貨方案:
方案1,甲種商品30件,乙商品70件;
方案2,甲種商品31件,乙商品69件;
方案3,甲種商品32件,乙商品68件.
方案1可獲得最大利潤,最大=4700.
【解析】
(1)設(shè)甲商品的進(jìn)價為x元,乙商品的進(jìn)價為y元,就有,3x+y=200,由這兩個方程構(gòu)成方程組求出其解即可.
(2)設(shè)購進(jìn)甲種商品m件,則購進(jìn)乙種商品(100﹣m)件,根據(jù)不少于6710元且不超過6810元購進(jìn)這兩種商品100的貨款建立不等式,求出其值就可以得出進(jìn)貨方案,設(shè)利潤為W元,根據(jù)利潤=售價﹣進(jìn)價建立解析式就可以求出結(jié)論.
解:(1)設(shè)甲商品的進(jìn)價為x元,乙商品的進(jìn)價為y元,由題意,得
,解得:.
答:商品的進(jìn)價為40元,乙商品的進(jìn)價為80元.
(2)設(shè)購進(jìn)甲種商品m件,則購進(jìn)乙種商品(100﹣m)件,由題意,得
,解得:.
∵m為整數(shù),∴m=30,31,32.
∴有三種進(jìn)貨方案:
方案1,甲種商品30件,乙商品70件;
方案2,甲種商品31件,乙商品69件;
方案3,甲種商品32件,乙商品68件.
設(shè)利潤為W元,由題意,得,
∵k=﹣10<0,∴W隨m的增大而減小.
∴m=30時,W最大=4700.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點P.
(1)如果∠A=80°,求∠BPC的度數(shù);
(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點Q,試探索∠Q、∠A之間的數(shù)量關(guān)系.
(3)如圖③,延長線段BP、QC交于點E,△BQE中,存在一個內(nèi)角等于另一個內(nèi)角的2倍,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,且,滿足.
(1)求點與點在數(shù)軸上對應(yīng)的數(shù)和;
(2)現(xiàn)動點從點出發(fā),沿數(shù)軸向右以每秒個單位長度的速度運動;同時,動點從點出發(fā),沿數(shù)軸向左以每秒個單位長度的速度運動,設(shè)點的運動時間為秒.
① 若點和點相遇于點, 求點在數(shù)軸上表示的數(shù);
② 當(dāng)點和點相距個單位長度時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖反映的過程是小明從家去食堂吃早餐,接著去圖書館讀報,然后回家.其中x表示時間,y表示小明離家的距離,小明家、食堂、圖書館在同一直線上.根據(jù)圖中提供的信息,有下列說法:
①食堂離小明家0.4km;
②小明從食堂到圖書館用了3min;
③圖書館在小明家和食堂之間;
④小明從圖書館回家的平均速度是0.04km/min.
其中正確的有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)
(2)已知當(dāng)油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機(jī)發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機(jī)器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機(jī)器人立即從點B出發(fā),沿直線勻速前進(jìn)攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七年級同學(xué)要在清明節(jié)到烈士陵園掃墓,計劃制作朵小白花學(xué)生會主席小琳先做了天,后來好朋友小雯也加入一起做了天,最后比計劃多制作朵小白花.已知小雯每天比小琳少制作朵小白花.請問:小琳、小雯平均每天分別能制作多少朵小白花?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:菱形OBCD在平面直角坐標(biāo)系中位置如圖所示,點B的坐標(biāo)為(2,0),∠DOB=60°.
(1)點D的坐標(biāo)為 , 點C的坐標(biāo)為;
(2)若點P是對角線OC上一動點,點E(0,﹣ ),求PE+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________.
(2)應(yīng)用:已知正方形ABCD的邊長為4,點P為AD邊上的一點,AP= ,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com