(2011•重慶)如圖,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.過點C作CE⊥AB于E,交對角線BD于F,點G為BC中點,連接EG、AF.
(1)求EG的長;
(2)求證:CF=AB+AF.
(1)解:∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC==2,∵CE⊥BE,點G為BC的中點,∴EG=BC=
答:EG的長是
(2)證明:在線段CF上截取CH=BA,連接DH,
∵BD⊥CD,BE⊥CE,

∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,
∵AD∥BC,
∴∠ADB=∠DBC=45°,
∴∠HDC=45°,∴∠HDB=∠BDC﹣∠HDC=45°,
∴∠ADB=∠HDB,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為2,點E是BC邊的中點,過點B作BG⊥AE,
垂足為G,延長BG交AC于點F,則CF=         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011?濱州)將矩形ABCD沿AE折疊,得到如圖所示圖形.若∠CED′=56°,則∠AED的大小是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011貴州安順,17,4分)已知:如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點DOA的中點,點PBC上運動,當(dāng)△ODP是腰長為5的等腰三角形時,則P點的坐標(biāo)為          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,∠B=80°,AE平分∠BAD交BC于點E,CF∥AE交AE于點F,則∠1=(  )
A.40°B.50°C.60°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

.如圖,四邊形ABCD是平行四邊形,添加一個條件__________________,可使它成為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角梯形ABCD中,ADBC,,,點EAB邊上,且CE平分,DE平分,則點ECD的距離為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•泰安)如圖,點O是矩形ABCD的中心,E是AB上的點,沿CE折疊后,點B恰好與點O重合,若BC=3,則折痕CE的長為( 。
A.B.
C.D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知菱形的邊長和一條對角線的長均為2cm,則菱形的面積為(  )
 

查看答案和解析>>

同步練習(xí)冊答案