【題目】如圖,正方形ABCD的邊長為a,點E在邊AB上運動(不與點A,B重合),∠DAM=45°,點F在射線AM上,且,CF與AD相交于點G,連接EC,EF,EG,則下列結(jié)論:①∠ECF=45°;②的周長為;③ ;④的面積的最大值.其中正確的結(jié)論是____.(填寫所有正確結(jié)論的序號)
【答案】①④
【解析】
①正確.如圖1中,在BC上截取BH=BE,連接EH.證明△FAE≌△EHC(SAS),即可解決問題;
②③錯誤.如圖2中,延長AD到H,使得DH=BE,則△CBE≌△CDH(SAS),再證明△GCE≌△GCH(SAS),即可解決問題;
④正確.設(shè)BE=x,則AE=a-x,AF=,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決最值問題.
解:如圖1,在BC上截取BH=BE,連接EH.
∵BE=BH,∠EBH=90°,
∴EH=BE,∵AF=BE,∴AF=EH,
∵∠DAM=∠EHB=45°,∠BAD=90°,
∴∠FAE=∠EHC=135°,
∵BA=BC,BE=BH,
∴AE=HC,∴△FAE≌△EHC(SAS),
∴EF=EC,∠AEF=∠ECH,
∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,
∴∠ECF=∠EFC=45°,故①正確,
如圖2中,延長AD到H,使得DH=BE,則△CBE≌△CDH(SAS),
∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,
∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,
∵GH=DG+DH,DH=BE,
∴EG=BE+DG,故③錯誤,
∴△AEG的周長=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②錯誤,
設(shè)BE=x,則AE=a-x,AF=,
∴∴,
∴當(dāng)時,的面積有最大值,最大值是,④正確;
故答案為:①④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,是的外接圓,過點作交于點,連接交于點,延長至點,使,連接.
(1)求證:;
(2)求證:是的切線;
(3)如圖2,若點是的內(nèi)心,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形中,,點分別在邊上,直線交矩形對角線于點,將沿直線翻折,點落在點處,且點在射線上。
Ⅰ.如圖①,當(dāng)時,①求證;②求的長;
Ⅱ.請寫出線段的長的取值范圍,及當(dāng)的長最大時的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,O為△ABC內(nèi)一點.
(1)以O為位似中心,作△A1B1C1,使△A1B1C1與△ABC的相似比為2∶1;
(2)以O為位似中心,作△A2B2C2,使△A2B2C2與△ABC的相似比為1∶2;
(3)若△ABC的周長為12 cm,面積為6cm2,請分別求出△A1B1C1,△A2B2C2的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊中,AB=6,點D在BC上,BD=4,點E為邊AC上一動點(不與點C重合),關(guān)于DE的軸對稱圖形為.
(1)當(dāng)點F在AC上時,求證:DF//AB;
(2)設(shè)的面積為S1,的面積為S2,記S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,請說明理由;
(3)當(dāng)B,F,E三點共線時。求AE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(2,-3)和點B(n,2);
(1)求直線與雙曲線的表達(dá)式;
(2)點P是雙曲線y=(m≠0)上的點,其橫、縱坐標(biāo)都是整數(shù),過點P作x軸的垂線,交直線AB于點Q,當(dāng)點P位于點Q下方時,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線y=-x(x-5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;…如此進(jìn)行下去,若P(2 017,m)是其中某段拋物線上一點,則m為( )
A. 4B. -4C. -6D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.
(1)求該拋物線的表達(dá)式;
(2)點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標(biāo)為t.
①當(dāng)點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com