【題目】如圖1,平面內(nèi)有一點P到△ABC的三個頂點的距離分別為PA、PB、PC,若有PA2=PB2+PC2則稱點P為△ABC關(guān)于點A的勾股點.
(1)如圖2,在4×5的網(wǎng)格中,每個小正方形的長均為1,點A、B、C、D、E、F、G均在小正方形的頂點上,則點D是△ABC關(guān)于點 的勾股點;在點E、F、G三點中只有點 是△ABC關(guān)于點A的勾股點.
(2)如圖3,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,
①求證:CE=CD;②若DA=DE,∠AEC=120°,求∠ADE的度數(shù).
(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,
①若△ADE是等腰三角形,求AE的長;②直接寫出AE+BE的最小值.
【答案】(1)B,F;(2)①見解析,②∠ADE=40°;(3)①AE的長為或,②AE+BE.
【解析】
(1)求AD2=5,DC2=5,DB2=10,得AD2+DC2=DB2,即點D是△ABC關(guān)于點B的勾股點;求出FA2,FB2,FC2,得到FA2+FB2=FC2,即點F是△ABC關(guān)于點A的勾股點.
(2)①由矩形性質(zhì)得∠ADC=90°,可得AD2+DC2=AC2;根據(jù)勾股數(shù)得BC2+EC2=AC2,又因為AD=BC,即得CE=CD.
②設(shè)∠CED=α,根據(jù)∠AEC=120°和CE=CD即∠ADC=90°,可用α表示△ADE的三個內(nèi)角,利用三角形內(nèi)角和180°為等量關(guān)系列方程,即求出α進(jìn)而求出∠ADE.
(3)由條件“點C是△ABE關(guān)于點A的勾股點”仍可得CE=CD=5,作為條件使用.①△ADE是等腰三角形需分3種情況討論,把每種情況畫圖再根據(jù)矩形性質(zhì)和勾股定理計算,即能求AE的長.②由畫圖可知,當(dāng)BE⊥AC時,AE+BE取得最小值.過點E分別作AB、BC的垂線,通過勾股定理計算即可求出答案.
解:(1)∵DA2=12+22=5,DB2=12+32=10,DC2=DA2=5
∴DB2=DC2+DA2
∴點D是△ABC關(guān)于點B的勾股點
∵EA2=42+42=32,EB2=22+52=29,EC2=4
∴點E不是△ABC的勾股點
∵FA2=32+42=25,FB2=22+42=20,FC2=12+22=5
∴FA2=FB2+FC2
∴點F是△ABC關(guān)于點A的勾股點
∵GA2=42+22=20,GB2=22+32=13,GC2=22+22=8
∴點G不是△ABC的勾股點
故答案為:B;F.
(2)①證明:∵點C是△ABE關(guān)于點A的勾股點
∴CA2=CB2+CE2
∵四邊形ABCD是矩形
∴AB=CD,AD=BC,∠ADC=90°
∴CA2=AD2+CD2=CB2+CD2
∴CB2+CE2=CB2+CD2
∴CE=CD
②設(shè)∠CED=α,則∠CDE=∠CED=α
∴∠ADE=∠ADC﹣∠CDE=90°﹣α
∵∠AEC=120°
∴∠AED=∠AEC﹣∠CED=120°﹣α
∵DA=DE
∴∠DAE=∠DEA=120°﹣α
∵∠DAE+∠DEA+∠ADE=180°
∴2(120°﹣α)+(90°﹣α)=180°
解得:α=50°
∴∠ADE=90°﹣50°=40°
(3)①∵矩形ABCD中,AB=5,BC=6
∴AD=BC=6,CD=AB=5
∵點C是△ABE關(guān)于點A的勾股點
∴CE=CD=5
i)如圖1,
若DE=DA,則DE=6
過點E作MN⊥AB于點M,交DC于點N
∴∠AME=∠MND=90°
∴四邊形AMND是矩形
∴MN=AD=6,AM=DN
設(shè)AM=DN=x,則CN=CD﹣DN=5﹣x
∵Rt△DEN中,EN2+DN2=DE2;Rt△CEN中,EN2+CN2=CE2
∴DE2﹣DN2=CE2﹣CN2
∴62﹣x2=52﹣(5﹣x)2
解得:x=
∴EN=,AM=DN=
∴ME=MN﹣EN=6﹣
∴Rt△AME中,AE=
ii)如圖2,
若AE=DE,則E在AD的垂直平分線上
過點E作PQ⊥AD于點P,交BC于點Q
∴AP=DP=
AD=3,∠APQ=∠PQC=90°
∴四邊形CDPQ是矩形
∴PQ=CD=5,CQ=PD=3
∴Rt△CQE中,EQ=
∴PE=PQ﹣EQ=1
∴Rt△APE中,AE=
iii)如圖3,
若AE=AD=6,則AE2+CE2=AD2+CD2=AC2
∴∠AEC=90°
取AC中點O,則點A、B、C、D在以O為圓心、OA為半徑的⊙O上
∴點E也在⊙O上
∴點E不在矩形ABCD內(nèi)部,不符合題意
綜上所述,若△ADE是等腰三角形,AE的長為或.
②當(dāng)BE⊥AC時,AE+BE取得最小值.
過點E分別作ER⊥AB于點R,ES⊥BC于點S,
∴四邊形BRES是矩形,∠EBS與∠ACB互余
∴∠EBS=∠ACD
∴tan∠EBS=tan∠ACD=
∴tan∠EBS=
設(shè)ES=6a,BS=5a,則BE=,CS=6﹣5a,AR=5﹣6a
∵Rt△CES中,CS2+ES2=CE2,即(6﹣5a)2+(6a)2=52
解得:a1=(舍去),a2=,61a2﹣60a=﹣11
∴Rt△ARE中,AE==
∴AE+BE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,現(xiàn)將Rt△ABC繞點A順時針旋轉(zhuǎn)30°得到△AB′C′,則圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線對稱軸DE交x軸于點E,連接BD.
(1)求經(jīng)過A,B,C三點的拋物線的函數(shù)表達(dá)式;
(2)點P是線段BD上一點,當(dāng)PE=PC時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某種品牌的籃球架實物圖與示意圖,已知底座BC=0.6米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.5米,籃板頂端F點到籃框D的距離FD=1.4米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離.(精確到0.1米.參考數(shù)據(jù):cos75°≈0.3,sin75°≈0.9,.tan75°≈3.7,≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,BC=4,點E、F分別在BC與CD上,且∠EAF=45°.如圖甲,若EA=EF,則EF=_____;如圖乙,若CE=CF,則EF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設(shè)直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請結(jié)合圖象直接寫出不等式k2x+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8元/千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)當(dāng)該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進(jìn)行銷售,能否銷售完這批蜜柚?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC=4.一動點P從點B出發(fā),沿BC方向以每秒1個單位長度的速度勻速運動,到達(dá)點C即停止,在整個運動過程中,過點P作PD⊥BC與Rt△ABC的直角邊相交于點D,延長PD至點Q,使得PD=QD,以PQ為斜邊在PQ左側(cè)作等腰直角三角形PQE.設(shè)運動時間為t秒(t>0)
(1)在整個運動過程中,判斷PE與AB的位置關(guān)系是
(2)如圖2,當(dāng)點D在線段AB上時,連接AQ、AP,是否存在這樣的b,使得AP=PQ?若存在,求出對應(yīng)的t的值;若不存在,請說明理由;
(3)當(dāng)t=4時,點D經(jīng)過點A:當(dāng)t=時,點E在邊AB上.設(shè)△ABC與△PQE重疊部分的面積為S,請求出在整個運動過程中S與t之間的函數(shù)關(guān)系式,以及寫出相應(yīng)的自變量t的取值范圍,并求出當(dāng)4<t≤時S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com