【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.

(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

【答案】
(1)證明:∵MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,

∴∠2=∠5,∠4=∠6,

∵MN∥BC,

∴∠1=∠5,∠3=∠6,

∴∠1=∠2,∠3=∠4,

∴EO=CO,F(xiàn)O=CO,

∴OE=OF


(2)解:∵∠2=∠5,∠4=∠6,

∴∠2+∠4=∠5+∠6=90°,

∵CE=12,CF=5,

∴EF= =13,

∴OC= EF=6.5


(3)解:當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.

證明:當O為AC的中點時,AO=CO,

∵EO=FO,

∴四邊形AECF是平行四邊形,

∵∠ECF=90°,

∴平行四邊形AECF是矩形.


【解析】(1)根據(jù)平行線的性質以及角平分線的性質得出∠1=∠2,∠3=∠4,進而得出答案;(2)根據(jù)已知得出∠2+∠4=∠5+∠6=90°,進而利用勾股定理求出EF的長,即可得出CO的長;(3)根據(jù)平行四邊形的判定以及矩形的判定得出即可.
【考點精析】解答此題的關鍵在于理解平行線的性質的相關知識,掌握兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補,以及對直角三角形斜邊上的中線的理解,了解直角三角形斜邊上的中線等于斜邊的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,邊長為 的正方形ABCD的對角線AC,BD相交于點E,頂點B,A在x,y軸正半軸上運動(x軸的正半軸,y軸的正半軸都不包含原點O)頂點C、D都在第一象限.

(1)如圖1,當∠ABO=45°時,求直線OE的解析式,并說明OE平分∠AOB;
(2)當∠ABO≠45°時(如圖2所示):OE是否還平分∠AOB仍然成立?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形繞其中心旋轉一定的角度 與原圖形重合,則這個旋轉角度至少為_______。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生對小區(qū)居民的健身方式進行調查,并將調查結果繪制成如圖兩幅不完整的統(tǒng)計圖.

請根據(jù)所給信息解答下列問題:
(1)本次共調查多少人;
(2)補全圖(1)中的條形統(tǒng)計圖,圖(2)中“跑步”所在扇形對應的圓心角度數(shù)是多少?
(3)估計2000人中喜歡打太極的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B,C,D四支足球隊分在同一小組進行單循環(huán)足球比賽,爭奪出線權,比賽規(guī)則規(guī)定:勝一場得3分,平一場得1分,負一場得0分,小組中積分最高的兩個隊(有且只有兩個隊)出線,小組賽結束后,如果A隊沒有全勝,那么A隊的積分至少要幾分才能保證一定出線?請說明理由.

[注:單循環(huán)比賽就是小組內的每一個隊都要和其他隊賽一場].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 兩條射線組成的圖形叫做角 B. 角的大小在放大鏡下會發(fā)生改變

C. 角的大小與角的兩邊畫出部分的長短無關 D. 直線是一個角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請寫出一個開口向上,且其圖象經過原點的拋物線的解析式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形的周長為8cm,求

(1)腰長y(cm)與底邊長x(cm)之間的函數(shù)關系式

(2)自變量x的取值范圍,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 (2016湖北鄂州第14題)如圖,已知直線 與x軸、y軸相交于P、Q兩點,與y=的圖像相交于A(-2,m)、B(1,n)兩點,連接OA、OB. 給出下列結論: k1k2<0;m+n=0; SAOP= SBOQ;不等式k1x+b>的解集是x<-2或0<x<1,其中正確的結論的序號是 .

查看答案和解析>>

同步練習冊答案