【題目】請寫出一個開口向上,且其圖象經(jīng)過原點的拋物線的解析式

【答案】y=x2+x
【解析】解: 設拋物線解析式為y=ax2+bx+c,
∵拋物線開中向上,
∴a>0,故可取a=1,
∵拋物線過原點,
∴c=0,
∵對稱沒有限制,
∴可取b=1,
所以答案是:y=x2+x.
【考點精析】本題主要考查了二次函數(shù)的性質的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是矩形ABCD內的任意一點,連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設它們的面積分別是S1、S2、S3、S4 , 給出如下結論:
①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1 , 則S4=2S2;④若S1=S2 , 則P點在矩形的對角線上.
其中正確的結論的序號是(把所有正確結論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形兩邊的長是3和4,第三邊的長是方程x2﹣12x+35=0的根,則該三角形的周長為(
A.14
B.12
C.12或14
D.以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.

(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線L1的解析表達式為y=﹣3x+3,且L1與x軸交于點D.直線L2經(jīng)過點A,B,直線L1 , L2交于點C.

(1)求直線L2的解析表達式;
(2)求△ADC的面積;
(3)在直線L2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.等弧所對的圓周角相等

B.平分弦的直徑垂直于弦

C.相等的圓心角所對的弧相等

D.圓是軸對稱圖形,任何一條直徑都是它的對稱軸

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鐘面上的時刻是830分,此時時針和分針所成的角度是___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算中結果正確的是(
A.a3a2=a6
B.3x2+2x2=5x4
C.(2x23=6x6
D.a10÷a9=a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=2x+4

(1)在如圖所示的平面直角坐標系中,畫出函數(shù)的圖象;

(2)求圖象與x軸的交點A的坐標,與y軸交點B的坐標;

(3)在(2)的條件下,求出△AOB的面積;

(4)利用圖象直接寫出:當y<0時,x的取值范圍.

查看答案和解析>>

同步練習冊答案