【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于D、E,且BD=2AD
(1)求k的值和點(diǎn)E的坐標(biāo);
(2)點(diǎn)P是線段OC上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使∠APE=90°?若存在,求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
【答案】(1)k="4," E(4,1);(2)存在要求的點(diǎn)P,坐標(biāo)為(1,0)或(3,0).
【解析】
試題(1)由矩形ABCD中,AB=4,BD=2AD,可得3AD=4,即可求得 AD的長(zhǎng),然后求得點(diǎn)D的坐標(biāo),即可求得K的值,繼而求得點(diǎn) E的坐標(biāo);(2)首先假設(shè)存在要求的點(diǎn)P坐標(biāo)為(m,0),OP=m,CP=4-m,由∠APE=90,易證得△AOP∽△PCE,然后由相似三角形的對(duì)應(yīng)邊成比例,求得m的值,繼而求得此時(shí)點(diǎn)P的坐標(biāo).
試題解析:(9分)(1)∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD=,
又∵OA=3,所以D(,3),∵點(diǎn)D在雙曲線上,所以k=×3=4.
∵四邊形OABC為矩形,∴AB=OC=4,∴點(diǎn)E的橫坐標(biāo)為4.
把x=4代入中,得y=1,所以E(4,1).
(2)假設(shè)存在要求的點(diǎn)P坐標(biāo)為(m,0),OP=m,CP=4-m.
∵∠APE=90,∴∠APO+∠EPC=90,又∵∠APO+∠OAP=90, ∴∠EPC=∠OAP,
又∵∠AOP=∠PCE=90,∴△AOP∽△PCE,∴,
∴,解得:m=1或m=3.
所以,存在要求的點(diǎn)P,坐標(biāo)為(1,0)或(3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)O在AB上,⊙O經(jīng)過A、D兩點(diǎn),交AC于點(diǎn)E,交AB于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑是2cm,E是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣4,1),B(﹣1,3),C(﹣1,1)
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;平移△ABC,若A對(duì)應(yīng)的點(diǎn)A2坐標(biāo)為(﹣4,﹣5),畫出△A2B2C2;
(2)若△A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,直接寫出旋轉(zhuǎn)中心坐標(biāo) .
(3)在x軸上有一點(diǎn)P使得PA+PB的值最小,直接寫出點(diǎn)P的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極開展“陽光體育”活動(dòng),并開設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜愛哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有3000名學(xué)生,請(qǐng)估計(jì)全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解九年級(jí)學(xué)生的體能情況,抽調(diào)了一部分學(xué)生進(jìn)行一分鐘跳繩測(cè)試,將測(cè)試成績(jī)整理后作出如下統(tǒng)計(jì)圖.甲同學(xué)計(jì)算出前兩組的頻率和是0.12,乙同學(xué)計(jì)算出跳繩次數(shù)不少于100次的同學(xué)占96%,丙同學(xué)計(jì)算出從左至右第二、三、四組的頻數(shù)比為4:17:15.結(jié)合統(tǒng)計(jì)圖回答下列問題:
(1)這次共抽調(diào)了多少人?
(2)若跳繩次數(shù)不少于130次為優(yōu)秀,則這次測(cè)試成績(jī)的優(yōu)秀率是多少?
(3)如果這次測(cè)試成績(jī)的中位數(shù)是120次,那么這次測(cè)試中,成績(jī)?yōu)?20次的學(xué)生至少有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AF,BE是△ABC的中線,AF⊥BE,垂足為點(diǎn)P,設(shè)BC=a,AC=b,AB=c,則a2+b2=5c2,利用這一性質(zhì)計(jì)算.如圖2,在平行四邊形ABCD中,E,F,G分別是AD,BC,CD的中點(diǎn),EB⊥EG于點(diǎn)E,AD=8,AB=2,則AF=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)A種品牌的玩具,購進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x>40),請(qǐng)用含x的代數(shù)式表示該玩具的銷售量.
(2)若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于450件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?
(3)該商場(chǎng)計(jì)劃將(2)中所得的利潤(rùn)的一部分資金采購一批B種玩具并轉(zhuǎn)手出售,根據(jù)市場(chǎng)調(diào)查并準(zhǔn)備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付倉庫保管費(fèi)350元,請(qǐng)問商場(chǎng)如何使用這筆資金,采用哪種方案獲利較多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com