如圖,在平面直角坐標(biāo)系中,以原點O為位似中心,將△ABO擴大到原來的2倍,得到△A′B′O.若點A的坐標(biāo)是(1,2),則點A′的坐標(biāo)是(  )
A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)

根據(jù)以原點O為位似中心,圖形的坐標(biāo)特點得出,對應(yīng)點的坐標(biāo)應(yīng)乘以-2,
故點A的坐標(biāo)是(1,2),則點A′的坐標(biāo)是(-2,-4),
故選:C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在由邊長為1的25個小正方形組成的正方形網(wǎng)格上有一個△ABC,試在這個網(wǎng)格上畫一個與△ABC相似,且面積最大的△A1B1C1(A1,B1,C1三點都在格點上),并求出這個三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在8×8網(wǎng)格圖里,以點D為位似中心,將四邊形ABCD放大一倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形.在建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(1,1).
(1)將△ABC沿y軸向下平移5個單位,得到△A1B1C1,畫出△A1B1C1
(2)以點C為位似中心,將△ABC放大到2倍.得到△A2B2C,畫出△A2B2C.
(3)寫出下面三個點的坐標(biāo):點A1______、點C1______、點B2______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC的頂點在格點上,且點A(-5,-1),點C(-1,-2).
(1)以原點O為旋轉(zhuǎn)中心,將△ABC繞點O逆時針旋轉(zhuǎn)90°得到△A′B′C′.請在圖中畫出△A′B′C′,并寫出點A的對稱點A′的坐標(biāo);
(2)以原點O為位似中心,位似比為2,在第一象限內(nèi)將△ABC放大,畫出放大后的圖形△A″B″C″.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上
①把△ABC向上平移5個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標(biāo);
②以原點O為位似中心,再畫出△ABC關(guān)于原點O在第二象限的位似圖形△A2B2C2,位似比為2:1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角坐標(biāo)中,△ABC的三個頂點分別為A(4,4)、B(-2,2)、C(3,0),
(1)請畫出一個以原點O為位似中心,且把△ABC縮小一半的位似圖形△A1B1C1
(2)寫出△A1B1C1各頂點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC的頂點坐標(biāo)分別為A(-2,6),B(-2,2),C(-4,0).
(1)在第四象限內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于點O位似,且△A1B1C1與△ABC的相似比為1:2;
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,作出以A(1,2),B(3,1),C(4,4)為頂點的△ABC的位似圖形△A′B′C′,使得△ABC與△A′B′C′對應(yīng)邊的比為1:2,位似中心是坐標(biāo)原點.

查看答案和解析>>

同步練習(xí)冊答案