定義:長(zhǎng)寬比為:1(n為正基數(shù))的矩形稱為株為矩形. 下面,我們通過(guò)折疊的方式折出一個(gè)矩形.如圖①所示.
操作1:將正方形ABCD沿過(guò)點(diǎn)B的直線折疊,使折疊后的點(diǎn)C落在對(duì)角線BD上的點(diǎn)G處,折痕為BH
操作2:將AD沿過(guò)點(diǎn)G的直線折疊,使點(diǎn)A,點(diǎn)D分別落在邊AB,CD上,折痕為EF
則四邊形BCEF為矩形
證明:設(shè)正方形ABCD的邊長(zhǎng)為1,則BD==.
由折疊性質(zhì)可知BG=BC=1,,則四邊形BCEF為矩形
閱讀以上內(nèi)容,回答下列問(wèn)題:
(1) 在圖中,所有與CH相等的線段是 ,tan的值是
(2) 已知四邊形BCEF為矩形,模仿上述操作,得到四邊形BCMN,如圖。
求證:四邊形BCMN是矩形
將圖中的矩形BCMN沿用(2)中的操作3次后,得到一個(gè)“矩形”,則n的值是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
圓內(nèi)接四邊形ABCD中,已知∠A=70°,則∠C=( )
A. 20° B. 30° C. 70° D. 110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知菱形A1B1C1D1的邊長(zhǎng)為2,∠A1B1C1=60°,對(duì)角線A1C1,B1D1相交于點(diǎn)O.以點(diǎn)O為坐標(biāo)原點(diǎn),分別以OA1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標(biāo)系.以B1D1為對(duì)角線作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2為對(duì)角線作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2B2為對(duì)角線作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點(diǎn)A1,A2,A3,…,An,則點(diǎn)An的坐標(biāo)為_(kāi)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
截至今年4月10日,舟山全市蓄水量為84 327 000m3,數(shù)據(jù)84 327 000用科學(xué)計(jì)數(shù)法表示為
A. 0.8437×108 B. 8.437×107 C. 8.437×108 D. 8437×103
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,拋物線交軸于點(diǎn)A(,0)和B(,0),交軸于點(diǎn)C,拋物線的頂點(diǎn)為D。下列四個(gè)命題:①當(dāng)時(shí),;②若,則;③拋物線上有兩點(diǎn)P(,)和Q(,),若,且,則;④點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)G,F(xiàn)分別在軸和軸上,當(dāng)時(shí),四邊形EDFG周長(zhǎng)的最小值為。其中真命題的序號(hào)是
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為
A.3 B.5 C.6 D.7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com