【題目】10分)已知∠MAN=135°,正方形ABCD繞點(diǎn)A旋轉(zhuǎn).

1)當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的外部(頂點(diǎn)A除外)時(shí),AM,AN分別與正方形ABCD的邊CBCD的延長線交于點(diǎn)M,N,連接MN

如圖1,若BM=DN,則線段MNBM+DN之間的數(shù)量關(guān)系是 ;

如圖2,若BM≠DN,請判斷中的數(shù)量關(guān)系是否仍成立?若成立,請給予證明;若不成立,請說明理由;

2)如圖3,當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的內(nèi)部(頂點(diǎn)A除外)時(shí),AM,AN分別與直線BD交于點(diǎn)M,N,探究:以線段BM,MN,DN的長度為三邊長的三角形是何種三角形,并說明理由.

【答案】1①M(fèi)N=BM+DN成立;(2)直角三角形.

【解析】試題(1如圖1,先證明△ADN≌△ABM,得到AN=AM∠NAD=∠MAB,得到∠NAD=∠MAB=67.5°.作AE⊥MNE,由等腰三角形三線合一的性質(zhì)得出MN=2NE,∠NAE=67.5°.再證明△ADN≌△AEN,得出DN=EN,進(jìn)而得到MN=BM+DN;

如圖2,先證明△ABM≌△ADP,得出AM=AP,∠1=∠2=∠3,再計(jì)算出∠PAN=135°.然后證明△ANM≌△ANP,得到MN=PN,進(jìn)而得到MN=BM+DN;

2)如圖3,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△ADE,連結(jié)NE.由旋轉(zhuǎn)的性質(zhì)得到DE=BM,AE=AM,∠EAM=90°,∠NDE=90°. 先證明△AMN≌△AEN.得到MN=EN.由DN,DENE為直角三角形的三邊,得到以線段BM,MN,DN的長度為三邊長的三角形是直角三角形.

試題解析:(1如圖1,若BM=DN,則線段MNBM+DN之間的數(shù)量關(guān)系是MN=BM+DN.理由如下:

△ADN△ABM中,∵AD=AB∠ADN=∠ABM,DN=BM,∴△ADN≌△ABMSAS),∴AN=AM,∠NAD=∠MAB,∵∠MAN=135°∠BAD=90°,∴∠NAD=∠MAB=360°﹣135°﹣90°=67.5°,作AE⊥MNE,則MN=2NE∠NAE=∠MAN=67.5°.在△ADN△AEN中,∵∠ADN=∠AEN,∠NAD=∠NAE,AN=AN∴△ADN≌△AENAAS),∴DN=EN∵BM=DN,MN=2EN,∴MN=BM+DN.故答案為:MN=BM+DN;

如圖2,若BM≠DN,中的數(shù)量關(guān)系仍成立.理由如下:

延長NC到點(diǎn)P,使DP=BM,連結(jié)AP四邊形ABCD是正方形,∴AB=AD,∠ABM=∠ADC=90°.在△ABM△ADP中,∵AB=AD∠ABM=∠ADP,BM=DP,∴△ABM≌△ADPSAS),∴AM=AP,∠1=∠2=∠3,∵∠1+∠4=90°,∴∠3+∠4=90°,∵∠MAN=135°,∴∠PAN=360°﹣∠MAN﹣∠3+∠4=360°﹣135°﹣90°=135°.在△ANM△ANP中,∵AM=AP∠MAN=∠PAN,AN=AN,∴△ANM≌△ANPSAS),∴MN=PN∵PN=DP+DN=BM+DN,∴MN=BM+DN

2)以線段BM,MNDN的長度為三邊長的三角形是直角三角形.理由如下:

如圖3,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△ADE,連結(jié)NE.由旋轉(zhuǎn)的性質(zhì)得:DE=BM,AE=AM∠EAM=90°,∠NDE=90°∵∠MAN135°∴∠EAN360°∠MAN∠EAM =135°,∴∠EAN =∠MAN.在△AMN△AEN中,∵AM=AE,∠MAN=∠EANAN=AN,∴△AMN≌△AEN∴MN=EN∵DNDE,NE為直角三角形的三邊,以線段BM,MNDN的長度為三邊長的三角形是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線BC,直線BDx軸交于點(diǎn)A,點(diǎn)B2,3),點(diǎn)D0,).

1)求直線BD的函數(shù)解析式;

2)在y軸上找一點(diǎn)P,使得△ABC與△ACP的面積相等,求出點(diǎn)P的坐標(biāo);

3)如圖2,E為線段AC上一點(diǎn),連結(jié)BE,一動點(diǎn)F從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位運(yùn)動到點(diǎn)E再沿線段EA以每秒個(gè)單位運(yùn)動到A后停止,設(shè)點(diǎn)F在整個(gè)運(yùn)動過程中所用時(shí)間為t,求t的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)的坐標(biāo)為

求該拋物線的解析式;

若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo);

設(shè)點(diǎn)是線段上的動點(diǎn),作軸交拋物線于點(diǎn),求線段長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在正方形的網(wǎng)格中,若點(diǎn)A的坐標(biāo)為(﹣11),點(diǎn)B的坐標(biāo)為(﹣20.

按要求回答下列問題:

(1)在圖中建立正確的平面直角坐標(biāo)系;

(2)根據(jù)所建立的坐標(biāo)系,直接寫出點(diǎn)C的坐標(biāo) ( );

(3)作出三角形ABC關(guān)于y軸對稱的三角形A1B1C1

(4)ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是ABBC邊上的點(diǎn),且∠EDF=45°,將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF;

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般地,任意三角形都是自相似圖形,只要順次連接三角形各邊中點(diǎn),則可將原三角形分割為四個(gè)都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖);把階分割得出的個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個(gè)小三角形都是全等三角形(為正整數(shù)),設(shè)此時(shí)小三角形的面積為.請寫出一個(gè)反映,之間關(guān)系的等式________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般地,任意三角形都是自相似圖形,只要順次連接三角形各邊中點(diǎn),則可將原三角形分割為四個(gè)都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖);把階分割得出的個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個(gè)小三角形都是全等三角形(為正整數(shù)),設(shè)此時(shí)小三角形的面積為.請寫出一個(gè)反映,,之間關(guān)系的等式________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)是我國的傳統(tǒng)佳節(jié),民間歷來有吃粽子的習(xí)俗.南方某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)査,毎人必選一種且只能選一種口味,并將調(diào)査情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整):

請根據(jù)以上信息冋答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中C所對圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線AB軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線OC交于點(diǎn)C

1)若直線AB解析式為

求點(diǎn)C的坐標(biāo);

△OAC的面積.

2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA4,P、Q分別為線段OA、OE上的動點(diǎn),連結(jié)AQPQ,試探索AQPQ是否存在最小值?若存在,求出這個(gè)最小值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案