【題目】以四邊形ABCD的邊AB、AD為底邊分別作等腰三角形ABFADE.

(1)當(dāng)四邊形ABCD為正方形時(如圖①),以邊AB、AD為斜邊分別向外側(cè)作等腰直角三角形ABFADE,連接EB、FD,線段BEDF的數(shù)量關(guān)系是:= ;

(2)當(dāng)四邊形ABCD為矩形時(如圖②),以邊AB、AD為斜邊分別向矩形內(nèi)側(cè)、外側(cè)作等腰直角三角形ABFADE,連接EF、BD,線段EFBD的數(shù)量關(guān)系是:= ,請?zhí)羁詹⒄f明理由;

(3)當(dāng)四邊形ABCD為平行四邊形時,以邊AB、AD為底邊分別向平行四邊形內(nèi)側(cè)、外側(cè)作等腰三角形ABFADE,且EADFBA的頂角∠AED=AFB=,連接EF、BD,交點(diǎn)為G.請用表示出∠EGD,并說明理由.

【答案】(1)1;(2);(3)

【解析】

1)根據(jù)△ABF和△ ADE是等腰直角三角形,四邊形ABCD是正方形,

求得△EBF≌△DEF,得到BE=DF;

2)根據(jù)△ABF和△ ADE是等腰直角三角形,四邊形ABCD是長方形,

求得△EAF~△DAB,得到;

3)根據(jù)等腰三角形ABFADE的頂角∠AED=AFB=,EAD=EDA=FAB=FBA=,所以△EAD~△FAB,再求得EAFDABPAEPGD,最后求得∠EGD=EAD=.

(1)1;…………………………………………3’

(2);…………………………………………4’

證明:∵△ABFADE是等腰直角三角形

EAD=45°,BAF=45°,…………………………………………5’

∵四邊形ABCD是矩形

∴∠BAD=900,

∴∠FAD=BAD-BAF=45°,

∴∠EAF=FAD+EAD=90°,

∴∠EAF=BAD=90°…………………………………………6’

∴△EAF~DAB…………………………………………7’

…………………………………………8’

3)設(shè)EFAD的交點(diǎn)為P點(diǎn)

∵等腰三角形ABFADE的頂角∠AED=AFB=

∴∠EAD=EDA=FAB=FBA=

∴△EAD~FAB…………………………………………9’

∵∠EAD+DAF=FAB+DAF

即:∠EAF=DAB

EAFDAB…………………………………………10’

∴∠AEF=ADB

又∵∠APE=GPD

PAEPGD…………………………………………11’

∴∠EGD=EAD=…………………………………………12’

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

(1)求拋物線解析式及頂點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)Ex,y)是拋物線上一動點(diǎn),且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積Sx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)當(dāng)四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?

是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,購進(jìn)時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.

(1)該玩具銷售單價定為多少元時,商場能獲得12000元的銷售利潤?

(2)該玩具銷售單價定為多少元時,商場獲得的銷售利潤最大?最大利潤是多少?

(3)若玩具廠規(guī)定該品牌玩具銷售單價不低于46元,且商場要完成不少于500件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,添加以下條件,不能判定的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,.

1)尺規(guī)作圖(保留作圖痕跡,不寫作法與證明):

①作的平分線交邊于點(diǎn);

②過點(diǎn)于點(diǎn);

2)在(1)所畫圖中,若,,則長為________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,ADBC邊上的中線.求證:ADBC.

(填空)

證明:∵ADBC邊上的中線

BD=CD(中線的意義)

在△ABD和△ACD

________;②________;③________.

________ ________________

∴∠ADB=________________

∴∠ADB= BDC=90°(平角的定義)

ADBC(垂直的定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展經(jīng)典誦讀進(jìn)校園活動,某校團(tuán)委組織八年級100名學(xué)生進(jìn)行經(jīng)典誦讀選拔賽,賽后對全體參賽學(xué)生的成績進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表。

組別

分?jǐn)?shù)段

頻次

頻率

A

60x<70

17

0.17

B

70x<80

30

a

C

80x<90

b

0.45

D

90x<100

8

0.08

請根據(jù)所給信息,解答以下問題:

(1)表中a=___,b=___;

(2)請計(jì)算扇形統(tǒng)計(jì)圖中B組對應(yīng)扇形的圓心角的度數(shù);

(3)已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機(jī)選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)FAC的延長線上,且∠CBF=CAB.

(1)求證:直線BF是⊙O的切線;

(2)若AB=5,sinCBF=,BCBF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的平分線與的垂直平分線相交于點(diǎn),,垂足分別為,,,則的長為__________

查看答案和解析>>

同步練習(xí)冊答案