【題目】如圖,已知在矩形紙片中,將紙片折疊,使頂點與邊的點重合.若折痕分別與交于點的外接圓與直線有唯一一個公共點,則折痕的為______.
【答案】
【解析】
根據折疊的性質判斷出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,從而判斷出EF=AG,得出四邊形AGEF是平行四邊形,繼而結合AG=GE,判定四邊形AGEF是菱形;連接ON,得出ON是梯形ABCE的中位線,在RT△ADE中,利用勾股定理可解出x,繼而可得出折痕FG的長度.
由折疊的性質可得,GA=GE,∠AGF=∠EGF,
∵DC∥AB,
∴∠EFG=∠AGF,
∴∠EFG=∠EGF,
∴EF=EG=AG,
∴四邊形AGEF是平行四邊形(EF∥AG,EF=AG),
又∵AG=GE,
∴四邊形AGEF是菱形
令△AED的外接圓與直線有唯一一個公共點為N,連接ON,如圖所示,
∵△AED是直角三角形,AE是斜邊,點O是AE的中點,△AED的外接圓與BC相切于點N,
∴ON⊥BC,
∵點O是AE的中點,
∴ON是梯形ABCE的中位線,
設CE=x,則ED=2-x,2ON=CE+AB=x+2,
在Rt△AED中,AE=2OE=2ON=x+2,
AD2+DE2=AE2,
∴12+(2-x)2=(2+x)2,
得x=,
,
∵△FEO∽△AED,
∴,
解得:FO=,
∴FG=2FO=.
故答案為:.
科目:初中數學 來源: 題型:
【題目】已知:有代數式①;②;③;④.若從中隨機抽取兩個,用“=”連接.
(1)寫出能得到的一元二次方程;
(2)從(1)中得到的一元二次方程中挑選一個進行解方程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過點,,,點為中點,連接、,并延長交于點.
(1)求拋物線的表達式;
(2)若拋物線與拋物線關于軸對稱,在拋物線位于第二象限的部分上取一點,過點作軸,垂足為點,是否存在這樣的點,使得與相似?若存在,請求出點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCD的頂點A、B、C的坐標分別為(0,5)(0,2)(4,2),直線l的解析式為y = kx+5-4k(k > 0).
(1)當直線l經過點B時,求一次函數的解析式;
(2)通過計算說明:不論k為何值,直線l總經過點D;
(3)直線l與y軸交于點M,點N是線段DM上的一點, 且△NBD為等腰三角形,試探究:
①當函數y = kx+5-4k為正比例函數時,點N的個數有 個;
②點M在不同位置時,k的取值會相應變化,點N的個數情況可能會改變,請直接寫出點N所有不同的個數情況以及相應的k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利達經銷店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸.該經銷店為提高經營利潤,準備采取降價的方式進行促銷.經市場調查發(fā)現:當每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設每噸材料售價為x(元),該經銷店的月利潤為y(元).
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)求出y與x的函數關系式(不要求寫出x的取值范圍);
(3)該經銷店要獲得最大月利潤,售價應定為每噸多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數,其中a>0.
(1)若方程有兩個實根,且方程有兩個相等的實根,求二次函數的解析式;
(2)若二次函數的圖象與x軸交于兩點,且當時,恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,以CD為直徑的⊙O分別交AC,BC于點E,F兩點,過點F作FG⊥AB于點G.
(1)試判斷FG與⊙O的位置關系,并說明理由.
(2)若AC=3,CD=2.5,求FG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1和圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.
(1)在圖1中畫出以AB為斜邊的直角三角形ABC,點C在小正方形的頂點上,且;
(2)在圖2中畫出以AB為一邊的等腰三角形ABD,點D在小正方形的頂點上,且的面積為16.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點,點A在點B左側,頂點在折線M﹣P﹣N上移動,它們的坐標分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動過程中,點A橫坐標的最小值為﹣3,則a﹣b+c的最小值是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com