【題目】在平行四邊形ABCD中,∠C和∠D的平分線交于M,DM的延長(zhǎng)線交ADE,試猜想:

1CMDE的位置關(guān)系?

2MDE的什么位置上?并證明你的猜想.

【答案】(1) CMDE;(2MED的中點(diǎn),見(jiàn)解析.

【解析】

1CMDE,由平行四邊形ABCDADBC,∠ADC+BCD=180°,結(jié)合角平分線可得∠MDC+MCD=90°,即可得結(jié)論;

2)由平行線的性質(zhì)得∠ADE=CEM,結(jié)合角平分線可得∠CDE=CED,可證出△ECD是等腰三角形,利用等腰三角形三線合一可得CM是中線,則MED的中點(diǎn).

(1) CMDE

ADBC

∴∠ADC+BCD=180°

DE,CM分別平分∠ADC, BCD

∴∠MDC+MCD=90°

CMDE

(2)MED的中點(diǎn)

ADBC

∴∠ADE=CEM

∵∠ADE=CDE

∴∠CDE=CED

CD=CE

CMDE,

EM=MD,即MED的中點(diǎn).

故答案為:(1) CMDE;(2MED的中點(diǎn),見(jiàn)解析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不透明的袋子中裝有4個(gè)相同的小球,它們除顏色外無(wú)其它差別,把它們分別標(biāo)號(hào):1、2、3、4,

(1)隨機(jī)摸出一個(gè)小球后,放回并搖勻,再隨機(jī)摸出一個(gè),用列表或畫樹(shù)狀圖的方法求出“兩次取的球標(biāo)號(hào)相同”的概率

(2)隨機(jī)摸出兩個(gè)小球,直接寫出“兩次取出的球標(biāo)號(hào)和等于4”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①,②是曉東同學(xué)在進(jìn)行居民樓高度、樓間距對(duì)住戶采光影響問(wèn)題的研究時(shí)畫的兩個(gè)示意圖.請(qǐng)你閱讀相關(guān)文字,解答下面的問(wèn)題.

1)圖①是太陽(yáng)光線與地面所成角度的示意圖.冬至日正午時(shí)刻,太陽(yáng)光線直射在南回歸線(南緯23.5B地上.在地處北緯36.5A地,太陽(yáng)光線與地面水平線l所成的角為,試借助圖①,求的度數(shù).

2)圖②是乙樓高度、樓間距對(duì)甲樓采光影響的示意圖.甲樓地處A地,其二層住戶的南面窗戶下沿距地面3.4.現(xiàn)要在甲樓正南面建一幢高度為22.3米的乙樓,為不影響甲樓二層住戶(一層為車庫(kù))的采光,兩樓之間的距離至少應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一張矩形紙片ABCD,

如圖1,點(diǎn)E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為點(diǎn)MN分別在邊AD,BC,利用直尺和圓規(guī)畫出折痕不寫作法,保留作圖痕跡

如圖2,點(diǎn)K在這張矩形紙片的邊AD上,,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點(diǎn)AB分別落在點(diǎn),處,小明認(rèn)為所在直線恰好經(jīng)過(guò)點(diǎn)D,他的判斷是否正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_______°;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí) 達(dá)到了解基本了解程度的總?cè)藬?shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年?yáng)|京奧運(yùn)會(huì)的比賽門票開(kāi)始接受公眾預(yù)訂.下表為奧運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票的人民幣價(jià)格,球迷小李用12000元做為預(yù)訂下表中比賽項(xiàng)目門票的資金.

比賽項(xiàng)目

票價(jià)(元/場(chǎng))

男籃

1000

足球

800

乒乓球

500

(1)若全部資金用來(lái)預(yù)訂男籃門票和乒乓球門票共15張,問(wèn)男籃門票和乒乓球門票各訂多少?gòu)?/span>?

(2)若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個(gè)球迷想預(yù)定上表中三種球類門票,其中足球門票與乒乓球門票數(shù)相同,且足球門票的費(fèi)用不超過(guò)男籃門票的費(fèi)用,問(wèn)可以預(yù)訂這三種球類門票各多少?gòu)垼?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,A是反比例函數(shù)yx0)圖象上一點(diǎn),By軸正半軸上一點(diǎn),以OA,AB為鄰邊作ABCO.若點(diǎn)CBC中點(diǎn)D都在反比例函數(shù)yk0,x0)圖象上,則k的值為( 。

A. 3B. 4C. 6D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著手機(jī)普及率的提高,有些人開(kāi)始過(guò)分依賴手機(jī),一天中使用手機(jī)時(shí)間過(guò)長(zhǎng)而形成了“手機(jī)癮”,某校學(xué)生會(huì)為了了解本校初三年級(jí)的手機(jī)使用情況,隨機(jī)調(diào)查了部分學(xué)生的手機(jī)使用時(shí)間,將調(diào)查結(jié)果分成五類:

A、基本不用;B、平均每天使用1~2h;C、平均每天使用2~4h;D、平均每天使用4~6h;E、平均每天使用超過(guò)6h,并根據(jù)統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)學(xué)生會(huì)一共調(diào)查了多少名學(xué)生?

(2)此次調(diào)查的學(xué)生中屬于E類的學(xué)生有   人,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若一天中手機(jī)使用時(shí)間超過(guò)6h,則患有嚴(yán)重的“手機(jī)癮”,該校初三學(xué)生共有900人,請(qǐng)估計(jì)該校初三年級(jí)中患有嚴(yán)重的“手機(jī)癮”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案