【題目】不透明的袋子中裝有4個相同的小球,它們除顏色外無其它差別,把它們分別標號:1、2、3、4,

(1)隨機摸出一個小球后,放回并搖勻,再隨機摸出一個,用列表或畫樹狀圖的方法求出“兩次取的球標號相同”的概率

(2)隨機摸出兩個小球,直接寫出“兩次取出的球標號和等于4”的概率.

【答案】(1)列表或畫樹狀圖詳見解析;;(2)

【解析】

試題分析:(1)畫樹狀圖展示所有16種等可能的結果數(shù),找出兩次取的球標號相同的結果數(shù),然后根據(jù)概率公式求解

(2)畫樹狀圖展示所有12種等可能的結果數(shù),再找出兩次取出的球標號和等于4的結果數(shù),然后根據(jù)概率公式求解.

試題解析:(1)畫樹狀圖為:

共有16種等可能的結果數(shù),其中兩次取的球標號相同的結果數(shù)為4,

所以“兩次取的球標號相同”的概率==;

(2)畫樹狀圖為:

共有12種等可能的結果數(shù),其中兩次取出的球標號和等于4的結果數(shù)為2,

所以“兩次取出的球標號和等于4”的概率==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】【問題】如圖①,ABC,BE平分∠ABC,CE平分∠ACB,若∠A=80°,則∠BEC=__ __;若∠A=n°,則∠BEC=__ _.

【探究】

(1)如圖②ABC,BD,BE三等分∠ABCCD,CE三等分∠ACB.若∠A=n°則∠BEC=____;

(2)如圖③,O是∠ABC與外角∠ACD的平分線BOCO的交點,試分析∠BOC和∠A有怎樣的關系?請說明理由;

(3)如圖④,O是外角∠DBC與外角∠BCE的平分線BOCO的交點,則∠BOC與∠A有怎樣的關系?(只寫結論,不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于實數(shù)ab,我們定義符號max{ab}的意義為:當ab時,max{ab}=a;當ab時,max{ab]=b;如:max{4,﹣2}=4,max{3,3}=3,若關于x的函數(shù)為y=max{x+3,﹣x+1},則該函數(shù)的最小值是( 。

A. 0 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD和正方形CGEF,且D點在CF邊上,M為AE中點,連接MD、MF,

(1)如圖1,請直接給出線段MD、MF的數(shù)量及位置關系是 ;

(2)如圖2,把正方形CGEF繞點C順時針旋轉,則(1)中的結論是否成立?若成立,請證明;若不成立,請給出你的結論并證明;

(3)若將正方形CGEF繞點C順時針旋轉30°時,CF邊恰好平分線段AE,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設該款童裝每件售價x元,每星期的銷售量為y件.

(1)求y與x之間的函數(shù)關系式;

(2)當每件售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?

(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,用火柴桿擺出一系列三角形圖案,共擺有n層,當n=1時,需3火柴;當n=2時,需9根火柴,按這種方式擺下去,

(1)當n=3時,需 根火柴.

(2)當n=20時,需 根火柴.

(3)用含n的式子寫出規(guī)律來______________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】y=1是方程my-4=2y-m的解,則m=_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雙11期間,某個體戶在淘寶網(wǎng)上購買某品牌A、B兩款羽絨服來銷售,若購買3件A,4件B需支付2400元,若購買2件A,2件B,則需支付1400元.

(1)求A、B兩款羽絨服在網(wǎng)上的售價分別是多少元?

(2)若個體戶從淘寶網(wǎng)上購買A、B兩款羽絨服各10件,均按每件600元進行零售,銷售一段時間后,把剩下的羽絨服全部6折銷售完,若總獲利不低于3800元,求個體戶讓利銷售的羽絨服最多是多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a,bc三個數(shù)的平均數(shù)是4,且a,bc,d四個數(shù)的平均數(shù)是5,則d的值為______

查看答案和解析>>

同步練習冊答案