【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點(diǎn)、和點(diǎn),動點(diǎn)從原點(diǎn)開始沿方向以每秒個單位長度移動,動點(diǎn)從點(diǎn)開始沿方向以每秒個單位長度移動,動點(diǎn)、同時出發(fā),當(dāng)動點(diǎn)到達(dá)原點(diǎn)時,點(diǎn)、停止運(yùn)動.
直接寫出拋物線的解析式:________;
求的面積與點(diǎn)運(yùn)動時間的函數(shù)解析式;當(dāng)為何值時,的面積最大?最大面積是多少?
當(dāng)的面積最大時,在拋物線上是否存在點(diǎn)(點(diǎn)除外),使的面積等于的最大面積?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1) ;(2)當(dāng)時,;(3)當(dāng)的面積最大時,在拋物線上存在點(diǎn)(點(diǎn)除外),使的面積等于的最大面積,點(diǎn)的坐標(biāo)為:或或
【解析】
(1)將點(diǎn)A(0,8)、B(8,0)代入拋物線y=-x2+bx+c即可求出拋物線的解析式為:y=-x2+3x+8;
(2)根據(jù)題意得:當(dāng)D點(diǎn)運(yùn)動t秒時,BD=t,OC=t,然后由點(diǎn)A(0,8)、B(8,0),可得OA=8,OB=8,從而可得OD=8-t,然后令y=0,求出點(diǎn)E的坐標(biāo)為(-2,0),進(jìn)而可得OE=2,DE=2+8-t=10-t,然后利用三角形的面積公式即可求△CED的面積S與D點(diǎn)運(yùn)動時間t的函數(shù)解析式為:S=-t2+5t,然后轉(zhuǎn)化為頂點(diǎn)式即可求出最值為:S最大=;
(3)由(2)知:當(dāng)t=5時,S最大=,進(jìn)而可知:當(dāng)t=5時,OC=5,OD=3,進(jìn)而可得CD=,從而確定C(0,5),D(3,0)然后根據(jù)待定系數(shù)法求出直線CD的解析式為:y=-x+5,然后過E點(diǎn)作EF∥CD,交拋物線與點(diǎn)P,然后求出直線EF的解析式,與拋物線聯(lián)立方程組解得即可得到其中的一個點(diǎn)P的坐標(biāo),然后利用面積法求出點(diǎn)E到CD的距離為,然后過點(diǎn)D作DN⊥CD,垂足為N,且使DN=,然后求出N的坐標(biāo),然后過點(diǎn)N作NH∥CD,與拋物線交與點(diǎn)P,然后求出直線NH的解析式,與拋物線聯(lián)立方程組求解即可得到其中的另兩個點(diǎn)P的坐標(biāo).
(1) 將點(diǎn)A(0,8)、B(8,0)代入拋物線y=-x2+bx+c,
得:,
解得:b=3,c=8,
∴拋物線的解析式為:y=-x2+3x+8,
故答案為:y=-x2+3x+8;
∵點(diǎn)、,
∴,,
令,得:,
解得:,,
∵點(diǎn)在軸的負(fù)半軸上,
∴點(diǎn),
∴,
根據(jù)題意得:當(dāng)點(diǎn)運(yùn)動秒時,,,
∴,
∴,
∴,
即,
∴當(dāng)時,;
由知:當(dāng)時,,
∴當(dāng)時,,,
∴,,
由勾股定理得:,
設(shè)直線的解析式為:,
將,,代入上式得:
,,
∴直線的解析式為:,
過點(diǎn)作,交拋物線與點(diǎn),如圖,
設(shè)直線的解析式為:,
將代入得:,
∴直線的解析式為:,
將,與聯(lián)立成方程組得:
,
解得:,,
∴;
過點(diǎn)作,垂足為,
∵當(dāng)時,,
∴,
過點(diǎn)作,垂足為,且使,過點(diǎn)作軸,垂足為,如圖,
可得,
∴,
即:,
解得:,
∴,
由勾股定理得:,
∴,
過點(diǎn)作,與拋物線交與點(diǎn),如圖,
設(shè)直線的解析式為:,
將,代入上式得:,
∴直線的解析式為:,
將,與聯(lián)立成方程組得:
,
解得:,,
∴或,
綜上所述:當(dāng)的面積最大時,在拋物線上存在點(diǎn)(點(diǎn)除外),使的面積等于的最大面積,點(diǎn)的坐標(biāo)為:或或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地相距60km,甲從A地去B地,乙從B地去A地,圖中l1、l2分別表示甲、乙兩人離B地的距離y(km)與甲出發(fā)時間x(h)的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,直接寫出乙的行駛速度;
(2)解釋交點(diǎn)A的實際意義;
(3)甲出發(fā)多少時間,兩人之間的距離恰好相距5km;
(4)若用y3(km)表示甲乙兩人之間的距離,請在坐標(biāo)系中畫出y3(km)關(guān)于時間x(h)的函數(shù)關(guān)系圖象,注明關(guān)鍵點(diǎn)的數(shù)據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=.
(1)求反比例函數(shù)的解析式
(2)連接OB,求△AOB的面積
(3) 根據(jù)圖象直接寫出當(dāng)時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形紙片按如圖方式折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)的落點(diǎn)記為點(diǎn),折痕為,連接.
求證:四邊形是菱形;
若,,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是二次函數(shù)圖象的一部分,圖象過點(diǎn),二次函數(shù)圖象對稱軸為直線,給出五個結(jié)論:①;②;③;④方程的根為,;⑤當(dāng)時,隨著的增大而增大.其中正確結(jié)論是( )
A. ①②③ B. ①③④ C. ②③④ D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(3,),點(diǎn)B的坐標(biāo)為(6,0),將△AOB繞點(diǎn)B按順時針方向旋轉(zhuǎn)一定的角度后得到△A′O′B,點(diǎn)A的對應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示甲、乙兩名選手在一次自行車越野賽中,路程y(千米)隨時間x(分)變化的圖象.下面幾個結(jié)論:①比賽開始24分鐘時,兩人第一次相遇.②這次比賽全程是10千米.③比賽開始38分鐘時,兩人第二次相遇.正確的結(jié)論為_____(只填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).
(1)求拋物線M的函數(shù)表達(dá)式;
(2)設(shè)F(t,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1.
①拋物線M1的頂點(diǎn)B1的坐標(biāo)為 ;
②當(dāng)拋物線M1與線段AB有公共點(diǎn)時,結(jié)合函數(shù)的圖象,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C的坐標(biāo)為(1,).
(1)求圖象過點(diǎn)B的反比例函數(shù)的解析式;
(2)求圖象過點(diǎn)A,B的一次函數(shù)的解析式;
(3)在第一象限內(nèi),當(dāng)以上所求一次函數(shù)的圖象在所求反比例函數(shù)的圖象下方時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com