【題目】把一張紙對(duì)折1次后,就得到2層;對(duì)折2次后,就得到4層;對(duì)折3次后,就得到8層;……,按照這樣對(duì)折下去.

(1)求將一張紙對(duì)折6次后,層數(shù)是多少?

(2)求將一張紙對(duì)折n次后,層數(shù)是多少(用含n的式子表示)?

(3)若一張紙的厚度均為0.5mm,求將該紙張對(duì)折2018次后的總的厚度是多少mm?

【答案】(1)64層;(2)2n層;(3) 22017.

【解析】

由于把紙對(duì)折1次時(shí),可以得到2層;當(dāng)對(duì)折2次時(shí),可以得到4=22層;當(dāng)對(duì)折3次時(shí),可以得到8=23層,由此即可得到層數(shù)S和折紙的次數(shù)n之間的關(guān)系為S=2n;

解:(1)由題意知,將一張紙對(duì)折6次后,層數(shù)是26=64層;

(2)2n層;

(3)由題意知,該紙張對(duì)折2018次后的總的厚度是22018×0.5=22018×=22017.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)380名師生秋游,計(jì)劃租用7輛客車,現(xiàn)有甲、乙兩種型號(hào)客車,它們的載客量和租金如表.

甲種客車

乙種客車

載客量(座/輛)

60

45

租金(元/輛)

550

450


(1)設(shè)租用甲種客車x輛,租車總費(fèi)用為y元.求出y(元)與x(輛)之間的函數(shù)表達(dá)式;
(2)當(dāng)甲種客車有多少輛時(shí),能保障所有的師生能參加秋游且租車費(fèi)用最少,最少費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】感知:如圖,在菱形ABCD中,,點(diǎn)E、F分別在邊AB、AD,易知

探究:如圖,在菱形ABCD中,,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.

拓展:如圖,在ABCD中,,點(diǎn)OAD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上,,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)EF之間距離是10cm,AB,CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的對(duì)應(yīng)點(diǎn)如圖所示.

(1)在橫線上填上“>”“=”“<”:

a 0,a-b 0,.

(2)在數(shù)軸上標(biāo)出表示有理數(shù)-a,-b,-c的點(diǎn);

(3)用“>”a,b,c,-a,-b,-c連接起來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為10厘米、6厘米,且ACBD互相垂直,順次連接四邊形ABCD四邊的中點(diǎn)E、F、G、H得四邊形EFGH,則四邊形EFGH的面積為_____平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ABDE,1=2,試說(shuō)明AEDC.下面是解答過(guò)程,請(qǐng)你填空或填寫理由.

解:∵ABDE(已知)∴∠1=     

又∵∠1=2 (已知)∴∠2=   (等量代換)

AEDC.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是AD上任意一點(diǎn).

(1)如圖1,連接BE、CE,問(wèn):BE=CE成立嗎?并說(shuō)明理由;

(2)如圖2,若BAC=45°,BE的延長(zhǎng)線與AC垂直相交于點(diǎn)F時(shí),問(wèn):EF=CF成立嗎?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.

(1)點(diǎn)(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;

(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案