【題目】如圖,在平面直角坐標系中,拋物線C1:y=ax2+bx-1經過點A(-2,1)和點B(-1,-1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.
(1)求拋物線C1的表達式;
(2)直接用含t的代數(shù)式表示線段MN的長;
(3)當△AMN是以MN為直角邊的等腰直角三角形時,求t的值;
(4)在(3)的條件下,設拋物線C1與y軸交于點P,點M在y軸右側的拋物線C2上,連接AM交y軸于點K,連接KN,在平面內有一點Q,連接KQ和QN,當KQ=1且∠KNQ=∠BNP時,請直接寫出點Q的坐標.
【答案】(1)y=x2+x-1;(2)t2+2;(3)1或0;(4)Q點坐標為:(0,2)、(-1,3)、.
【解析】
(1)應用待定系數(shù)法;
(2)把x=t帶入函數(shù)關系式相減;
(3)根據圖形分別討論∠ANM=90°、∠AMN=90°時的情況.
(4)根據題意畫出滿足條件圖形,可以找到AN為△KNP對稱軸,由對稱性找到第一個滿足條件Q,再通過延長和圓的對稱性找到剩余三個點.利用勾股定理進行計算.
(1)∵拋拋物線C1:y=ax2+bx-1經過點A(-2,1)和點B(-1,-1),
∴,
解得,
∴拋拋物線C1的解析式為y=x2+x-1;
(2)∵動直線x=t與拋物線C1交于點N,與拋物線C2交于點M
∴點N的縱坐標為t2+t-1,點M的縱坐標為2t2+t+1
∴MN=(2t2+t+1)-(t2+t-1)=t2+2
(3)共分兩種情況
①當∠ANM=90°,AN=MN時,由已知N(t,t2+t-1),A(-2,1)
∴AN=t-(-2)=t+2
∵MN=t2+2
∴t2+2=t+2
∴t1=0(舍去),t2=1
∴t=1
②當∠AMN=90°,AM=MN時,由已知M(t,2t2+t+1),A(-2,1)
∴AM=t-(-2)=t+2,
∵MN=t2+2
∴t2+2=t+2
∴t1=0,t2=1(舍去)
∴t=0
故t的值為1或0
(4)由(3)可知t=1時M位于y軸右側,根據題意畫出示意圖如圖:
易得K(0,3),B、O、N三點共線
∵A(-2,1)N(1,1)P(0,-1)
∴點K、P關于直線AN對稱
設半徑為1的⊙K與y軸下方交點為Q2,則其坐標為(0,2)
∴Q2與點O關于直線AN對稱
∴Q2是滿足條件∠KNQ=∠BNP.
則NQ2延長線與⊙K交點Q1,Q1、Q2關于KN的對稱點Q3、Q4也滿足∠KNQ=∠BNP.
由圖形易得Q1(-1,3)
設點Q3坐標為(m,n),由對稱性可知Q3N=NQ1=BN=2
由∵⊙K半徑為1
∴
解得,.
同理,設點Q4坐標為(m,n),由對稱性可知Q4N=NQ2=NO=
∴
解得.
∴滿足條件的Q點坐標為:(0,2)、(-1,3)、
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,過點B的切線BE∥AC,點P是優(yōu)弧AC上一動點(不與A,C重合),連接PA,PB,PC,PB交AC于D.
(1)求證:PB平分∠APC;
(2)當PD=3,PB=4時,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經過A(0,3),C(2,n)兩點,直線l:y=x+2過C點,且與y軸交于點B,拋物線上有一動點E,過點E作直線EF⊥x軸于點F,交直線BC于點D
(1)求拋物線的解析式.
(2)如圖1,當點E在直線BC上方的拋物線上運動時,連接BE,BF,是否存在點E使直線BC將△BEF的面積分為2:3兩部分?若存在,求出點E的坐標,若不存在說明理由;
(3)如圖2,若點E在y軸右側的拋物線上運動,連接AE,當∠AED=∠ABC時,直接寫出此時點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O為△ADB的外接圓,DH⊥AB于點H,現(xiàn)將△AHD沿AD翻折得到△AED,AE交⊙O于點C,連接OC交AD于點G.
(1)求證:DE是⊙O的切線;
(2)若AB=10,求線段OG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】央視“經典詠流傳”開播以來受到社會廣泛關注.我市某校就“中華文化我傳承——地方戲曲進校園”的喜愛情況進行了隨機調查,對收集的信息進行統(tǒng)計,繪制了下面兩副尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖所提供的信息解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”.
(1)被調查的總人數(shù)是_____人,扇形統(tǒng)計圖中C部分所對應的扇形圓心角的度數(shù)為_____;
(2)①補全條形統(tǒng)計圖;②若該校共有學生1800人,請根據上述調查結果,估計該校學生中A類有多少人;
(3)在抽取的A類5人中,剛好有3個女生2個男生,從中隨機抽取兩個同學擔任兩角色,用樹形圖或列表法求出被抽到的兩個學生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表統(tǒng)計的是甲、乙兩班男生的身高情況,根據統(tǒng)計表繪制了如下不完整的統(tǒng)計圖.
根據以上統(tǒng)計表完成下列問題:
(1)統(tǒng)計表中的m= ,n= ,并將頻數(shù)分布直方圖補充完整;
(2)在這次測量中兩班男生身高的中位數(shù)在 范圍內;
(3)在身高不低于167cm的男生中,甲班有2人.現(xiàn)從這些身高不低于167cm的男生中隨機推選2人補充到學校國旗護衛(wèi)隊中,請用列表或畫樹狀圖的方法求出這兩人都來自相同班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為“節(jié)能減排,保護環(huán)境”,某村計劃建造A、B兩種型號的沼氣池共20個,以解決所有農戶的燃料問題.據市場調查:建造A、B兩種型號的沼氣池各1個,共需費用5萬元;建造A型號的沼氣池3個,B種型號的沼氣池4個,共需費用18萬元.
(1)求建造A、B兩種型號的沼氣池造價分別是多少?
(2)設建造A型沼氣池x個,總費用為y萬元,求y與x之間的函數(shù)關系式;若要使投入總費用不超過52萬元,至少要建造A型沼氣池多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠CAB=90°,AB=AC,點A在y軸上,BC∥x軸,點B.將△ABC繞點A順時針旋轉的△AB′C′,當點B′落在x軸的正半軸上時,點C′的坐標為( )
A.(﹣,﹣1)B.(﹣,﹣1)
C.(﹣,+1)D.(﹣,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com