【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過(guò)A(0,3),C(2,n)兩點(diǎn),直線lyx+2過(guò)C點(diǎn),且與y軸交于點(diǎn)B,拋物線上有一動(dòng)點(diǎn)E,過(guò)點(diǎn)E作直線EFx軸于點(diǎn)F,交直線BC于點(diǎn)D

(1)求拋物線的解析式.

(2)如圖1,當(dāng)點(diǎn)E在直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連接BE,BF,是否存在點(diǎn)E使直線BC將△BEF的面積分為23兩部分?若存在,求出點(diǎn)E的坐標(biāo),若不存在說(shuō)明理由;

(3)如圖2,若點(diǎn)Ey軸右側(cè)的拋物線上運(yùn)動(dòng),連接AE,當(dāng)∠AED=∠ABC時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo).

【答案】1y=﹣x2+2x+3;(2)存在,E,)或(,);(3)點(diǎn)E,)或(,).

【解析】

1)直線lyx+2過(guò)C點(diǎn),則點(diǎn)C2,3),yx+2過(guò)C點(diǎn),且與y軸交于點(diǎn)B,則點(diǎn)B0,2),即可求解;(2=,即可求解;(3)分當(dāng)點(diǎn)E在直線BC上方、點(diǎn)E在直線BC的下方兩種情況,分別求解即可.

1)直線lyx+2過(guò)點(diǎn)C2,n),且與y軸交于點(diǎn)B,

n=×2+2=3,當(dāng)x=0時(shí),y=2,

B0,2),C2,3

將點(diǎn)A、C的坐標(biāo)代入二次函數(shù)表達(dá)式得:,

解得:

∴拋物線的表達(dá)式為:y=﹣x2+2x+3;

2)設(shè)點(diǎn)Em,﹣m2+2m+3),則點(diǎn)Dm,m+2),

DE=﹣m2+m+1DFm+2,

=,

解得:m,

∴﹣m2+2m+3=,或﹣m2+2m+3=,

∴點(diǎn)E,)或(,);

3)由(2)知:Em,﹣m2+2m+3),則點(diǎn)Dm,m+2),

DE=﹣m2+m+1,DFm+2,

①如圖2,當(dāng)點(diǎn)E在直線BC上方時(shí),

ABEF,∠ABD+EDB180°

∵∠AED=∠ABC,

∴∠AED+EDB180°,

AECD,

∴四邊形ABDE為平行四邊形,

ABDE1=﹣m2+m+1,

解得:m0(舍去0);

∴﹣m2+2m+3=,即E,.

②如圖3,當(dāng)點(diǎn)E在直線BC的下方時(shí),

設(shè)AE、BD交于點(diǎn)N,過(guò)點(diǎn)Nx軸的平行線交DE于點(diǎn)M

ABDE,

∴∠ABN=∠NDE,而∠AED=∠ABC,

∴∠ABN=∠NDE=∠AED=∠ABC

∴△NAB、△DEN都是以點(diǎn)N為頂點(diǎn)的等腰三角形,

∴點(diǎn)M的縱坐標(biāo)和AB中點(diǎn)的坐標(biāo)同為,

由中點(diǎn)公式得:(﹣m2+2m+3+m+2)=,

解得:m0(舍去0),

∴﹣m2+2m+3=,即E,).

綜上,點(diǎn)E,)或(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A為某封閉圖形邊界上一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x,線段AP的長(zhǎng)為y,表示yx的函數(shù)關(guān)系的圖象大致如圖所示,則該封閉圖形可能是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a0)與x軸相交于點(diǎn)A(x1,0),B(x2,0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=-3x+t上.

(1)求點(diǎn)C的坐標(biāo);

(2)當(dāng)y1隨著x的增大而增大時(shí),求自變量x的取值范圍;

(3)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求2n2-5n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某建筑物CD的高度,先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了40m,此時(shí)自B處測(cè)得建筑物頂部的仰角是45°.已知測(cè)角儀的高度是1.5m,請(qǐng)你計(jì)算出該建筑物的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在RtABC中,∠ABC90°,點(diǎn)OAB邊上一點(diǎn),以O為圓心OB為半徑的⊙O與邊AB相交于點(diǎn)E,與AC邊相切于D點(diǎn),連接OC交⊙O于點(diǎn)F

1)連接DE,求證:OCDE;

2)若⊙O的半徑為3

①連接DF,若四邊形OEDF為菱形,弧BD的長(zhǎng)為_____(結(jié)果保留π

②若AE2,則AD的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過(guò)B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過(guò)B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1y=ax2+bx-1經(jīng)過(guò)點(diǎn)A-2,1)和點(diǎn)B-1,-1),拋物線C2y=2x2+x+1,動(dòng)直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M

1)求拋物線C1的表達(dá)式;

2)直接用含t的代數(shù)式表示線段MN的長(zhǎng);

3)當(dāng)AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值;

4)在(3)的條件下,設(shè)拋物線C1y軸交于點(diǎn)P,點(diǎn)My軸右側(cè)的拋物線C2上,連接AMy軸于點(diǎn)K,連接KN,在平面內(nèi)有一點(diǎn)Q,連接KQQN,當(dāng)KQ=1且∠KNQ=BNP時(shí),請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(問(wèn)題發(fā)現(xiàn))

如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE90°,延長(zhǎng)CA到點(diǎn)F,使得AFAC,連接DFBE,則線段BEDF的數(shù)量關(guān)系為   ,位置關(guān)系為   ;

2)(拓展研究)

將△ADE繞點(diǎn)A旋轉(zhuǎn),(1)中的結(jié)論有無(wú)變化??jī)H就圖(2)的情形給出證明;

3)(解決問(wèn)題)

當(dāng)AB2,AD,△ADE旋轉(zhuǎn)得到D,E,F三點(diǎn)共線時(shí),直接寫出線段DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案