【題目】如圖,過(guò)原點(diǎn)的直線與反比例函數(shù)()的圖象交于,兩點(diǎn),點(diǎn)在第一象限.點(diǎn)在軸正半軸上,連結(jié)交反比例函數(shù)圖象于點(diǎn).為的平分線,過(guò)點(diǎn)作的垂線,垂足為,連結(jié).若是線段中點(diǎn),的面積為4,則的值為______.
【答案】
【解析】
連接OE,CE,過(guò)點(diǎn)A作AF⊥x軸,過(guò)點(diǎn)D作DH⊥x軸,過(guò)點(diǎn)D作DG⊥AF;由AB經(jīng)過(guò)原點(diǎn),則A與B關(guān)于原點(diǎn)對(duì)稱,再由BE⊥AE,AE為∠BAC的平分線,
可得AD∥OE,進(jìn)而可得S△ACE=S△AOC;設(shè)點(diǎn)A(m, ),由已知條件D是線段AC中點(diǎn),DH∥AF,可得2DH=AF,則點(diǎn)D(2m,),證明△DHC≌△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S△HDC=k+k+=8;即可求解;
解:連接OE,CE,過(guò)點(diǎn)A作AF⊥x軸,過(guò)點(diǎn)D作DH⊥x軸,過(guò)點(diǎn)D作DG⊥AF,
∵過(guò)原點(diǎn)的直線與反比例函數(shù)y=(k>0)的圖象交于A,B兩點(diǎn),
∴A與B關(guān)于原點(diǎn)對(duì)稱,
∴O是AB的中點(diǎn),
∵BE⊥AE,
∴OE=OA,
∴∠OAE=∠AEO,
∵AE為∠BAC的平分線,
∴∠DAE=∠AEO,
∴AD∥OE,
∴S△ACE=S△AOC,
∵D是線段AC中點(diǎn),的面積為4,
∴AD=DC,S△ACE=S△AOC=8,
設(shè)點(diǎn)A(m, ),
∵D是線段AC中點(diǎn),DH∥AF,
∴2DH=AF,
∴點(diǎn)D(2m,),
∵CH∥GD,AG∥DH,
∴∠ADG=∠DCH,∠DAG=∠CDH,
在△AGD和△DHC中,
∴S△HDC=S△ADG,
∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+×(DH+AF)×FH+S△HDC
=k+k+=8;
∴k=8,
∴k= .
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是邊BC的中點(diǎn),聯(lián)結(jié)AD.過(guò)點(diǎn)C作CE⊥AD于點(diǎn)E,聯(lián)結(jié)BE.
(1)求證:BD2=DEAD;
(2)如果∠ABC=∠DCE,求證:BDCE=BEDE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開(kāi)機(jī)后,飲水機(jī)自動(dòng)開(kāi)始加熱(此過(guò)程中水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)滿足一次函數(shù)關(guān)系),當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開(kāi)始下降,此過(guò)程中水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)成反比例關(guān)系,當(dāng)水溫降至20C時(shí),飲水機(jī)又自動(dòng)開(kāi)始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明上午八點(diǎn)將飲水機(jī)在通電開(kāi)機(jī)(此時(shí)飲水機(jī)中原有水的溫度為20℃后即外出散步,預(yù)計(jì)上午八點(diǎn)半散步回到家中,回到家時(shí),他能喝到飲水機(jī)內(nèi)不低于30℃的水嗎?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張師傅駕車從甲地到乙地,兩地相距500千米,汽車出發(fā)前油箱有油25升,途中加油若干升,加油前、后汽車都以100千米/小時(shí)的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的關(guān)系如圖所示.以下說(shuō)法錯(cuò)誤的是
A.加油前油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))的函數(shù)關(guān)系是y=﹣8t+25
B.途中加油21升
C.汽車加油后還可行駛4小時(shí)
D.汽車到達(dá)乙地時(shí)油箱中還余油6升
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(﹣1,0),對(duì)稱軸為直線x=﹣2.
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);
(3)點(diǎn)P是(2)中拋物線對(duì)稱軸上一動(dòng)點(diǎn),且以1個(gè)單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為 秒時(shí),△PAD的周長(zhǎng)最小?當(dāng)t為 秒時(shí),△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號(hào))
②點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在一點(diǎn)P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年11月20日,“美麗玉環(huán),文旦飄香”號(hào)冠名列車正式發(fā)車,為廣大旅客帶去“中國(guó)文旦之鄉(xiāng)”的獨(dú)特味道.根據(jù)市場(chǎng)調(diào)查,在文旦上市銷售的30天中,其銷售價(jià)格(元公斤)與第天之間滿足函數(shù)(其中為正整數(shù));銷售量(公斤)與第天之間的函數(shù)關(guān)系如圖所示,如果文旦上市期間每天的其他費(fèi)用為100元.
(1)求銷售量與第天之間的函數(shù)關(guān)系式;
(2)求在文旦上市銷售的30天中,每天的銷售利潤(rùn)與第天之間的函數(shù)關(guān)系式;(日銷售利潤(rùn)=日銷售額-日維護(hù)費(fèi))
(3)求日銷售利潤(rùn)的最大值及相應(yīng)的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別交于兩點(diǎn),拋物線經(jīng)過(guò)點(diǎn),與軸另一交點(diǎn)為,頂點(diǎn)為.
(1)求拋物線的解析式;
(2)在軸上找一點(diǎn),使的值最小,求的最小值;
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn),使得?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖像與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)C的坐標(biāo)為,二次函數(shù)的圖像經(jīng)過(guò)A、B、C三點(diǎn).
(1)求二次函數(shù)的解析式
(2)如圖1,已知點(diǎn)在拋物線上,作射線BD,點(diǎn)Q為線段AB上一點(diǎn),過(guò)點(diǎn)Q作軸于點(diǎn)M,作于點(diǎn)N,過(guò)Q作軸交拋物線于點(diǎn)P,當(dāng)QM與QN的積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,連接AP,若點(diǎn)E為拋物線上一點(diǎn),且滿足,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,公園中一正方形水池中有一噴泉,噴出的水流呈拋物線狀,測(cè)得噴出口高出水面0.8m,水流在離噴出口的水平距離1.25m處達(dá)到最高,密集的水滴在水面上形成了一個(gè)半徑為3m的圓,考慮到出水口過(guò)高影響美觀,水滴落水形成的圓半徑過(guò)大容易造成水滴外濺到池外,現(xiàn)決定通過(guò)降低出水口的高度,使落水形成的圓半徑為2.75m,則應(yīng)把出水口的高度調(diào)節(jié)為高出水面( 。
A.0.55米B.米C.米D.0.4米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com