【題目】如圖,在ABC中,AB=AC>BC,BD AC邊上的高,點(diǎn)C關(guān)于直線BD的對(duì)稱(chēng)點(diǎn)為點(diǎn)E,連接BE.

(1)①依題意補(bǔ)全圖形;

若∠BAC=,求∠DBE的大小(用含的式子表示);

(2)DE=2AE,點(diǎn)FBE中點(diǎn),連接AFBD=4,求AF的長(zhǎng).

  

【答案】(1) ①見(jiàn)解析;②;(2)2.

【解析】(1) ①以點(diǎn)D為圓心,CD為半徑作弧,與AD的交點(diǎn)為E,連接BE;②由等腰三角形性質(zhì)求得∠ABC=∠ACB=90°-.再由軸對(duì)稱(chēng)性質(zhì)得BE=BC,可證∠BEC=∠ACB=90°-,進(jìn)一步得∠DBE=90°-∠BEC=.(2)作FG⊥ACG,證FG∥BD,再證FG是三角形BED的中位線,得,由DE=2AE,得AE=EG=DG.設(shè)AE=EG=DG=x,則AB=AC=5x.由勾股定理得BD=4x;再由BD=4,求得x =1,在直角三角形AFG中,利用勾股定理可求得AF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在紙面上有一數(shù)軸如圖所示.

嘗試:折疊紙面,使表示1的點(diǎn)與表示的點(diǎn)重合,則表示的點(diǎn)與表示_________的點(diǎn)重合.

發(fā)現(xiàn):折疊紙面,使表示的點(diǎn)與表示3的點(diǎn)重合,則表示5的點(diǎn)與表示____________的點(diǎn)重合.

應(yīng)用:若數(shù)軸上、兩點(diǎn)之間的距離為11左側(cè)),且經(jīng)過(guò)折疊后,表示的點(diǎn)與表示3的點(diǎn)重合,點(diǎn)與點(diǎn)重合,分別求、兩點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南江縣某鄉(xiāng)兩村盛產(chǎn)鳳柑,村有鳳柑200噸,村有鳳柑300噸.現(xiàn)將這些鳳柑運(yùn)到兩個(gè)冷藏倉(cāng)庫(kù),已知倉(cāng)庫(kù)可儲(chǔ)存240噸,倉(cāng)庫(kù)可儲(chǔ)存260噸;從村運(yùn)往兩處的費(fèi)用分別為每噸20元和25元,從村運(yùn)往兩處的費(fèi)用分別為每噸15元和18元.設(shè)從村運(yùn)往倉(cāng)庫(kù)的鳳柑重量為噸.

(1)請(qǐng)?zhí)顚?xiě)表格(單位:噸)

(2)請(qǐng)分別求出兩村運(yùn)往兩倉(cāng)庫(kù)的鳳柑的運(yùn)輸費(fèi)用(用含的代數(shù)式表示);

(3)當(dāng)時(shí),試求兩村運(yùn)往兩倉(cāng)庫(kù)的鳳柑的運(yùn)輸費(fèi)用.

總計(jì)

200

300

總計(jì)

240

260

500

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知識(shí)生成】我們已經(jīng)知道,通過(guò)計(jì)算幾何圖形的面積可以表示一些代數(shù)恒等式.

例如圖可以得到,基于此,請(qǐng)解答下列問(wèn)題:

(1)根據(jù)圖2,寫(xiě)出一個(gè)代數(shù)恒等式:

(2)利用(1)中得到的結(jié)論,解決下面的問(wèn)題:若a+b+c=10,ab+ac+bc=35,= .

(3) 小明同學(xué)用圖 中x 張邊長(zhǎng)為a 的正方形, y張邊長(zhǎng)為b 的正方形,z 張寬、長(zhǎng)分別為 a、b 的長(zhǎng)方形紙片拼出一個(gè)面積為 (2a+b)(a+2b)長(zhǎng)方形,則x+y+z=

知識(shí)遷移】(4)事實(shí)上,通過(guò)計(jì)算幾何圖形的體積也可以表示一些代數(shù)恒等式,圖4表示的是一個(gè)邊長(zhǎng)為的正方體挖去一個(gè)小長(zhǎng)方體后重新拼成一個(gè)新長(zhǎng)方體,請(qǐng)你根據(jù)圖4中圖形的變化關(guān)系,寫(xiě)出一個(gè)代數(shù)恒等式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,都是等邊三角形,,下列結(jié)論中,正確的個(gè)數(shù)是( );②;③;④若,且,則

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCDEC中,AC=BC,DC=ECACB=ECD=90°.

(1)如圖1,當(dāng)點(diǎn)A、C、D在同一條直線上時(shí),AC=12,EC=5

求證:AFBD,

AF的長(zhǎng)度;

(2)如圖2,當(dāng)點(diǎn)A、C、D不在同一條直線上時(shí)求證:AFBD;

(3)如圖3,在(2)的條件下,連接CF并延長(zhǎng)CFAD于點(diǎn)G,AFG是一個(gè)固定的值嗎?若是,求出AFG的度數(shù),若不是,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016廣東省茂名市)如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)k為常數(shù),k≠0)的圖象交于點(diǎn)A(﹣1,4)和點(diǎn)Ba,1).

(1)求反比例函數(shù)的表達(dá)式和a、b的值;

(2)若A、O兩點(diǎn)關(guān)于直線l對(duì)稱(chēng),請(qǐng)連接AO,并求出直線l與線段AO的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點(diǎn)O是△ABC內(nèi)的一點(diǎn),BOC=130°.

(1)求證:OB=DC;

(2)求DCO的大;

(3)設(shè)AOB=α,那么當(dāng)α為多少度時(shí),△COD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲,四邊形OABC的邊OAOC分別在x軸、y軸的正半軸上,頂點(diǎn)在B點(diǎn)的拋物線交x軸于點(diǎn)A、D,交y軸于點(diǎn)E,連接ABAE、BE.已知tan∠CBE=A3,0),D﹣1,0),E03).

1)求拋物線的解析式及頂點(diǎn)B的坐標(biāo);

2)求證:CB△ABE外接圓的切線;

3)試探究坐標(biāo)軸上是否存在一點(diǎn)P,使以D、E、P為頂點(diǎn)的三角形與△ABE相似,若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

4)設(shè)△AOE沿x軸正方向平移t個(gè)單位長(zhǎng)度(0t≤3)時(shí),△AOE△ABE重疊部分的面積為s,求st之間的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案