【題目】(2016廣東省茂名市)如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)k為常數(shù),k≠0)的圖象交于點(diǎn)A(﹣1,4)和點(diǎn)Ba,1).

(1)求反比例函數(shù)的表達(dá)式和ab的值;

(2)若A、O兩點(diǎn)關(guān)于直線l對(duì)稱,請(qǐng)連接AO,并求出直線l與線段AO的交點(diǎn)坐標(biāo).

【答案】(1),;(2)(,2).

【解析】

試題(1)由點(diǎn)A的坐標(biāo)結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可求出k值,從而得出反比例函數(shù)解析式;再將點(diǎn)AB坐標(biāo)分別代入一次函數(shù)y=x+b中得出關(guān)于a、b的二元一次方程組,解方程組即可得出結(jié)論;(2)連接AO,設(shè)線段AO與直線l相交于點(diǎn)M.由A、O兩點(diǎn)關(guān)于直線l對(duì)稱,可得出點(diǎn)M為線段AO的中點(diǎn),再結(jié)合點(diǎn)A、O的坐標(biāo)即可得出結(jié)論.

試題解析:(1點(diǎn)A﹣1,4)在反比例函數(shù)y=k為常數(shù),k≠0)的圖象上,

∴k=﹣1×4=﹣4, 反比例函數(shù)解析式為y=﹣

把點(diǎn)A﹣1,4)、Ba1)分別代入y=x+b中,

得:,解得:

2)連接AO,設(shè)線段AO與直線l相交于點(diǎn)M,如圖所示. ∵A、O兩點(diǎn)關(guān)于直線l對(duì)稱,

點(diǎn)M為線段OA的中點(diǎn), 點(diǎn)A﹣14)、O00), 點(diǎn)M的坐標(biāo)為(,2).

直線l與線段AO的交點(diǎn)坐標(biāo)為(,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,B=90ACB=30,AB=2,AD=2AC,DC=2BC

1)求證:ACD為直角三角形;(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,ABAC,∠C=30°,ABAD

(1)求∠BDA的度數(shù);

(2)若AD=2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC>BC,BD AC邊上的高,點(diǎn)C關(guān)于直線BD的對(duì)稱點(diǎn)為點(diǎn)E,連接BE.

(1)①依題意補(bǔ)全圖形;

若∠BAC=,求∠DBE的大小(用含的式子表示);

(2)DE=2AE,點(diǎn)FBE中點(diǎn),連接AF,BD=4,求AF的長(zhǎng).

  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知2b+1的平方根為±3,3a+2b1的算術(shù)平方根為4,求a+2b的平方根.

2)若x、y都是實(shí)數(shù),且y=++8,求x+y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是直線AC外的一點(diǎn),點(diǎn)D,E分別是AC,CB兩邊上的點(diǎn),點(diǎn)P關(guān)于CA的對(duì)稱點(diǎn)P1恰好落在線段ED,P點(diǎn)關(guān)于CB的對(duì)稱點(diǎn)P2落在ED的延長(zhǎng)線上,PE=2.5,PD=3,ED=4,則線段P1P2的長(zhǎng)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,CDAB于點(diǎn)D,AEB=90°,CD=AE.

求證:(1)BCD≌△BAE;(2)EBD是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=m,P為BC上任意一點(diǎn),則PA2+PBPC的值為(  )

A. m2 B. m2+1 C. 2m2 D. (m+1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家新開發(fā)的一種電動(dòng)車如圖,它的大燈A射出的光線AB,AC與地面MN所夾的銳角分別為8°和10°,大燈A與地面離地面的距離為1m求該車大燈照亮地面的寬度BC.(不考慮其它因素)(參數(shù)數(shù)據(jù):sin8°=,tan8°=,sin10°=,tan10°=

查看答案和解析>>

同步練習(xí)冊(cè)答案