【題目】如圖,ABC中,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MNBC,交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F

1)判斷OEOF的大小關(guān)系?并說(shuō)明理由;

2)若CE=8,CF=6,求OC的長(zhǎng)

3)連結(jié)AE,AF,當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并說(shuō)出你的理由.

【答案】1OE=OF;(25;(3AC的中點(diǎn)時(shí)四邊形AECF是矩形,理由見(jiàn)解析

【解析】

1)根據(jù)CF平分∠ACD,且MNBD可證OF=OC,同理可證OE=OC,即可得OE=OF;
2)根據(jù)三角形的內(nèi)角和定理和等腰三角形的性質(zhì)可求∠ECF=90°,根據(jù)勾股定理可求EF的長(zhǎng),根據(jù)直角三角形斜邊上中線等于斜邊的一半,可得OC的長(zhǎng);
3)當(dāng)點(diǎn)OAC的中點(diǎn)時(shí),由(1)知OE=OF,可證四邊形AECF是平行四邊形,再根據(jù)∠ECF=90°,可證四邊形AECF是矩形.

解:(1OE=OF,理由如下:

CF平分∠ACD,且MNBD
∴∠ACF=FCD=CFO
OF=OC
同理可證:OC=OE
OE=OF
2)由(1)知:OF=OC=OE
∴∠OCF=OFC,∠OCE=OEC
∴∠OCF+OCE=OFC+OEC
而∠OCF+OCE+OFC+OEC=180°
∴∠ECF=OCF+OCE=90°
EF=10

OCEF5
3)當(dāng)點(diǎn)O移動(dòng)到AC中點(diǎn)時(shí),四邊形AECF為矩形
理由如下:
∵當(dāng)點(diǎn)O移動(dòng)到AC中點(diǎn)時(shí)
OA=OCOE=OF
∴四邊形AECF為平行四邊形
又∵∠ECF=90°
∴四邊形AECF為矩形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),正方形ABCD和正方形CEFG有一公共點(diǎn)C,且B,C,E在同一直線,連接BGDE.

(1)請(qǐng)你猜想BG,DE的位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由.

(2)若正方形CEFG繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度后,如圖(2),BGDE是否還存在上述關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,B=90°,AC=60cm,A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DFBC于點(diǎn)F,連接DE,EF.

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;

(3)當(dāng)t為何值時(shí),DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CDAB,垂足為D,點(diǎn)EBC上,EF⊥AB,垂足為F,∠1=2

1)試說(shuō)明:DGBC;

2)若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了綠化小區(qū),某物業(yè)公司要在形如五邊形ABCDE的草坪上建一個(gè)矩形花壇PKDH.
已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直線為x軸,AE所在直線為y軸,建立平面直角坐標(biāo)系,坐標(biāo)原點(diǎn)為O.

(1)求直線AB的解析式.
(2)若設(shè)點(diǎn)P的橫坐標(biāo)為x,矩形PKDH的面積為S,求S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:

①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).

(1)畫出ABC向右平移4個(gè)單位后得到的A1B1C1

(2)圖中ACA1C1的關(guān)系是: _____________.

(3)畫出ABCAB邊上的高CD;垂足是D

(4)圖中ABC的面積是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式kx+b< 的解集;
(3)過(guò)點(diǎn)B作BC⊥x軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種商品A的零售價(jià)為每件900元,為了適應(yīng)市場(chǎng)競(jìng)爭(zhēng),商店按零售價(jià)的九折優(yōu)惠后,再讓利40元銷售,仍可獲利10%

1)這種商品A的進(jìn)價(jià)為多少元?

2)現(xiàn)有另一種商品B進(jìn)價(jià)為600元,每件商品B也可獲利10%.對(duì)商品AB共進(jìn)貨100件,要使這100件商品共獲純利6670元,則需對(duì)商品A、B分別進(jìn)貨多少件?

查看答案和解析>>

同步練習(xí)冊(cè)答案