【題目】如圖1,拋物線與x軸交于點A(m﹣2,0)和B(2m+3,0)(點A在點B的左側(cè)),與y軸交于點C,連結(jié)BC.

(1)求m、n的值;

(2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求NBC面積的最大值;

(3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使PCM為等腰三角形,PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.

【答案】(1)m=1,n=﹣9;(2);(3)P(,0)或(,0).

【解析】

試題分析:(1)利用拋物線的解析式確定對稱軸為直線x=2,再利用對稱性得到2﹣(m﹣2)=2m+3﹣2,解方程可得m的值,從而得到A(﹣1,0),B(5,0),然后把A點坐標代入可求出n的值;

(2)作NDy軸交BC于D,如圖2,利用拋物線解析式確定C(0,3),再利用待定系數(shù)法求出直線BC的解析式為y=﹣x+3,設(shè)N(x,﹣x2+x+3),則D(x,﹣x+3),根據(jù)三角形面積公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=﹣x2+x,然后利用二次函數(shù)的性質(zhì)求解;

(3)先利用勾股定理計算出BC=,再分類討論:當PMB=90°,則PMC=90°,PMC為等腰直角三角形,MP=MC,設(shè)PM=t,則CM=t,MB=﹣t,證明BMP∽△BOC,利用相似比可求出BP的長,再計算OP后可得到P點坐標;當MPB=90°,則MP=MC,設(shè)PM=t,則CM=t,MB=﹣t,證明BMP∽△BCO,利用相似比可求出BP的長,再計算OP后可得到P點坐標.

試題解析:(1)拋物線的解析式為=,拋物線的對稱軸為直線x=2,點A和點B為對稱點,2﹣(m﹣2)=2m+3﹣2,解得m=1,A(﹣1,0),B(5,0),把A(﹣1,0)代入得9+n=0,解得n=﹣9;

(2)作NDy軸交BC于D,如圖2,拋物線解析式為 =,當x=0時,y=3,則C(0,3),設(shè)直線BC的解析式為y=kx+b,把B(5,0),C(0,3)代入得,解得,直線BC的解析式為,設(shè)N(x,),則D(x,),ND==,S△NBC=S△NDC+S△NDB=5ND==,當x=時,NBC面積最大,最大值為;

(3)存在.

B(5,0),C(0,3),BC==;分兩種情況討論:

PMB=90°,則PMC=90°,PMC為等腰直角三角形,MP=MC,設(shè)PM=t,則CM=t,MB=﹣t,∵∠MBP=OBC,∴△BMP∽△BOC,,即,解得t=,BP=OP=OB﹣BP=5﹣=,此時P點坐標為(,0);

MPB=90°,則MP=MC,設(shè)PM=t,則CM=t,MB=﹣t,∵∠MBP=CBO,∴△BMP∽△BCO,,即,解得t=,BP=,OP=OB﹣BP=5﹣=,此時P點坐標為(,0);

綜上所述,P點坐標為(,0)或(,0).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,對稱軸為直線x=的拋物線經(jīng)過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A

(1)求拋物線的解析式;

(2)若點P為第一象限內(nèi)拋物線上的一點,設(shè)四邊形COBP的面積為S,求S的最大值;

(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△A′B′C′關(guān)于直線對稱,下列結(jié)論中:①△ABC≌△A′B′C′;
②∠BAC′=∠B′AC;
③l垂直平分CC′;
④直線BC和B′C′的交點不一定在l上,
正確的有( )

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)直線l1和直線l2平行,且l1和l2間的距離為a.如果線段AB在l1的右側(cè),并設(shè)AB關(guān)于l1的對稱圖形是A′B′,而A′B′關(guān)于l2的對稱圖形是A″B″(如圖),那么,線段AB和A″B″有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點,且B(1,0)

(1)求拋物線的解析式和點A的坐標;

(2)如圖1,點P是直線y=x上的動點,當直線y=x平分∠APB時,求點P的坐標;

(3)如圖2,已知直線分別與x軸、y軸交于C、F兩點,點Q是直線CF下方的拋物線上的一個動點,過點Q作y軸的平行線,交直線CF于點D,點E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A表示一個多項式,若A÷(a-b)=2a+3b,則A=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:

(1)設(shè)QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當x為何值時,S有最大值?并求出最小值;

(2)是否存在x的值,使得QPDP?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.

(1)求出∠AOB及其補角的度數(shù);
(2)請求出∠DOC和∠AOE的度數(shù),并判斷∠DOE與∠AOB是否互補,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上離開原點4個長度單位的點表示的數(shù)是 。

查看答案和解析>>

同步練習冊答案