【題目】如圖,中,的頂點分別在上,當點在邊上運動時,點隨之在邊上運動,的形狀保持不變,在運動過程中,點到點的最大距離為( )
A.7B.5C.4D.3
【答案】A
【解析】
取AB的中點D,連接CD,根據(jù)三角形的邊角關系得到OC≤OD+DC,只有當O、D及C共線時,OC取得最大值,最大值為OD+CD,根據(jù)D為AB中點,得到BD=3,根據(jù)三線合一得到CD垂直于AB,在Rt△BCD中,根據(jù)勾股定理求出CD的長,在Rt△AOB中,OD為斜邊AB上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OD的值,進而求出DC+OD,即為OC的最大值.
取AB的中點D,連接CD,
∵AC=BC=5,AB=6,
∵點D是AB邊中點,
∴BD=AB=3,CD⊥AB,
∴CD=,
連接OD,OC,有OC≤OD+DC,
當O、D.、C共線時,OC有最大值,最大值=OD+CD,
∵△AOB為直角三角形,D為斜邊AB的中點,
∴OD=AB=3,
∴OD+CD=3+4=7,即OC的最大值=7.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+4x+c的圖象與x軸交于A、B兩點,與y軸交于點C,其中A(﹣1,0),C(0,5)
(1)求二次函數(shù)的解析式,并求出當x=1時的函數(shù)值.
(2)連接BC,AC,得到△ABC,現(xiàn)將拋物線圖象只向下平移m個單位,使得頂點落在△ABC內(nèi)部(不包括邊界),請寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料,解答問題:
觀察下列方程:①;②;③;…;
(1)按此規(guī)律寫出關于x的第4個方程為 ,第n個方程為 ;
(2)直接寫出第n個方程的解,并檢驗此解是否正確.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在銳角三角形ABC中.BC=,∠ABC=45°,BD平分∠ABC.若M,N分別是邊BD,BC上的動點,則CM+MN的最小值是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標有數(shù)字2、3、4、6的乒乓球,它們的形狀、大小、顏色、質地完全相同,耀華同學先從盒子里隨機取出一個小球,記為數(shù)字x,不放回,再由潔玲同學隨機取出另一個小球,記為數(shù)字y,
(1)用樹狀圖或列表法表示出坐標(x,y)的所有可能出現(xiàn)的結果;
(2)求取出的坐標(x,y)對應的點落在反比例函數(shù)y=圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在公園有兩座垂直于水平地面且高度不一的圖柱,兩座圓柱后面有一堵與地面互相垂直的墻,且圓柱與墻的距離皆為.敏敏觀察到高度矮圓柱的影子落在地面上,其影長為;而高圓柱的部分影子落在墻上,如圖所示.已知落在地面上的影子皆與墻面互相重直,并視太陽光為平行光,在不計圓柱厚度與影子寬度的情況下,請回答下列問題:
(1)若敏敏的身高為,且此刻她的影子完全落在地面上,求影子的長度.
(2)若同一時間量得高圓柱落在墻上的影長為,請你畫出示意圖并求出高圓柱的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個結論中,正確的是( 。
A. 若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上
B. 當k>0時,y隨x的增大而減小
C. 過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關于直線y=﹣x成軸對稱
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形中,點分別在邊,上,且.
(1)將繞著點順時針旋轉90°,得到(如圖①),求證:;
(2)若直線與,的延長線分別交于點(如圖②),求證:;
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段,,之間的數(shù)量關系 .(不要求書寫證明過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 中,AB=AC, ∠BAC <60°,將線段 AB 繞點 A逆時針旋轉 60°得到點 D, 點 E 與點 D 關于直線 BC 對稱,連接 CD,CE,DE.
(1)依題意補全圖形;
(2)判斷△CDE 的形狀,并證明;
(3)請問在直線CE上是否存在點 P,使得 PA - PB =CD 成立?若存在,請用文字描述出點 P 的準確位置,并畫圖證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com