【題目】甲、乙兩車在同一直線上從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早出發(fā)2h,并且甲車途中休息了0.5h,如圖是甲、乙兩車離開(kāi)A地的距離y(km)與甲行駛時(shí)間x(h)的函數(shù)圖象.根據(jù)圖中提供的信息,有下列說(shuō)法:(1m的值為1;(2a的值為40;(3)乙車比甲車早h到達(dá)B地. 其中正確的有(

A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

【答案】A

【解析】

先由函數(shù)圖象中的信息求出m的值,再根據(jù)“路程÷時(shí)間=速度”求出甲的速度,并求出a的值;先根據(jù)圖形判斷甲、乙兩車中先到達(dá)B地的是乙車,再把y=260代入y=40x-20求得甲車到達(dá)B地的時(shí)間,再求出乙車行駛260km需要260÷80=3.25h,即可得到結(jié)論;

解:由題意,得m=1.5-0.5=1.故(1)正確,
甲的速度為:120÷(3.5-0.5=40km/h),

a= =40,故(2)正確;
乙的速度為:120÷(3.5-2=80km/h(千米/小時(shí)),
設(shè)甲車休息之后行駛路程ykm)與時(shí)間xh)的函數(shù)關(guān)系式為y=kx+b,由題意,得

解得: ,

y=40x-20
根據(jù)圖形得知:甲、乙兩車中先到達(dá)B地的是乙車,
y=260代入y=40x-20得,x=7,
∵乙車的行駛速度:80km/h,
∴乙車的行駛260km需要260÷80=3.25h,

,

∴甲比乙遲到達(dá)B地,故(3)正確;

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛汽車往返于甲、乙兩地之間,如果汽車以50千米/時(shí)的平均速度從甲地出發(fā),則6小時(shí)可到達(dá)乙地.

1)寫出時(shí)間t(時(shí))關(guān)于速度v(千米/時(shí))的函數(shù)關(guān)系式,并畫(huà)出函數(shù)圖象.

2)若這輛汽車需在5小時(shí)內(nèi)從甲地到乙地,則此時(shí)汽車的平均速度至少應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在正方形中,點(diǎn)分別在上,△是等邊三角形,連接,給出下列結(jié)論:

; ;

垂直平分;

其中結(jié)論正確的共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西民間的雕刻藝術(shù)源遠(yuǎn)流長(zhǎng),主要以古代傳統(tǒng)吉祥紋樣為素材,以石雕、木雕磚雕等形式,來(lái)體現(xiàn)主人的高尚情操和文化修養(yǎng)以及人們的美好愿望.某木雕經(jīng)銷商購(gòu)進(jìn)木象木馬兩種雕刻藝術(shù)品,購(gòu)木象藝術(shù)品共用了元,木馬藝術(shù)品共用了元已知木馬每件的進(jìn)價(jià)比木象每件的進(jìn)價(jià)貴元,且購(gòu)進(jìn)木象”“木馬的數(shù)量相同.

求每件木象木馬藝術(shù)品的進(jìn)價(jià);

該經(jīng)銷商將購(gòu)進(jìn)的兩種藝術(shù)品進(jìn)行銷售,木象的銷售單價(jià)為元,木馬的銷售單價(jià)為元,銷售過(guò)程中發(fā)現(xiàn)木象的銷量不好,經(jīng)銷商決定:“木象銷售一定數(shù)量后,將剩余的木象按原銷售單價(jià)的七折銷售;木馬的銷售單價(jià)保持不變要使兩種藝術(shù)品全部售完后共獲利不少于元,問(wèn)木象按原銷售單價(jià)應(yīng)至少銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知ADBC,ABBC,CDDE,CD=ED,AD=6,BC=9,則ADE的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解七、八年級(jí)學(xué)生對(duì)防溺水安全知識(shí)的掌握情況,從七、八年級(jí)各隨機(jī)抽取50名學(xué)生進(jìn)行測(cè)試,并對(duì)成績(jī)(百分制)進(jìn)行整理、描述和分析.部分信息如下:

a.七年級(jí)成績(jī)頻數(shù)分布直方圖:

b.七年級(jí)成績(jī)?cè)?/span>這一組的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年級(jí)成績(jī)的平均數(shù)、中位數(shù)如下:

年級(jí)

平均數(shù)

中位數(shù)

76.9

m

79.2

79.5

根據(jù)以上信息,回答下列問(wèn)題:

1)在這次測(cè)試中,七年級(jí)在80分以上(含80分)的有   人;

2)表中m的值為   ;

3)在這次測(cè)試中,七年級(jí)學(xué)生甲與八年級(jí)學(xué)生乙的成績(jī)都是78分,請(qǐng)判斷兩位學(xué)生在各自年級(jí)的排名誰(shuí)更靠前,并說(shuō)明理由;

4)該校七年級(jí)學(xué)生有400人,假設(shè)全部參加此次測(cè)試,請(qǐng)估計(jì)七年級(jí)成績(jī)超過(guò)平均數(shù)76.9分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+5x+3﹣3m=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)若m為負(fù)整數(shù),求此時(shí)方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.

(1)求證:△ABQ≌△CAP;

(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,求出它的度數(shù).

(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,直接寫出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ABx軸、y軸分別交于點(diǎn)A和點(diǎn)BOA=4,且OA,OB長(zhǎng)是關(guān)于x的方程x2﹣mx+12=0的兩實(shí)根,以OB為直徑的⊙MAB交于C,連接CM,交x軸于點(diǎn)N,點(diǎn)DOA的中點(diǎn).

1求證:CD⊙M的切線;2求線段ON的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案