【題目】如圖,在平行四邊形ABCD中,E為BC邊上一點,連接DE,點F為線段DE上一點,且∠AFE=∠B.
(1)求證△ADF∽△DEC;
(2)若BE=2,AD=6,且DF=DE,求DF的長度.
【答案】(1)見解析;(2)DF=4
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得到∠ADF=∠DEC,∠C+∠B=180°,根據(jù)∠AFE=∠B得到∠AFD=∠C,根據(jù)相似三角形的判定定理即可證明;
(2)根據(jù)相似三角形的性質(zhì)列出比例式,代入計算即可.
解:(1)證明:∵四邊形ABCD是平行四邊形,
∴∠C+∠B=180°,∠ADF=∠DEC,
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C,
∴△ADF∽△DEC;
(2)∵△ADF∽△DEC
∴
∵四邊形ABCD是平行四邊形,AD=6,BE=2
∴EC=BC-BE=AD-BE=4,
又∵DF=DE
∴DE=DF
∴
解得DF=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次羽毛球賽中,甲運動員在離地面米的P點處發(fā)球,球的運動軌跡PAN看作一個拋物線的一部分,當(dāng)球運動到最高點A時,其高度為3米,離甲運動員站立地點O的水平距離為5米,球網(wǎng)BC離點O的水平距離為6米,以點O為原點建立如圖所示的坐標(biāo)系,乙運動員站立地點M的坐標(biāo)為(m,0).
(1)求拋物線的解析式(不要求寫自變量的取值范圍);
(2)求羽毛球落地點N離球網(wǎng)的水平距離(即NC的長);
(3)乙原地起跳后可接球的最大高度為2.4米,若乙因為接球高度不夠而失球,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,AB>AC,點D,E分別在邊AB,AC上,且DE∥BC,若AD=2,AE=,則的值是 ;
(2)如圖2,在(1)的條件下,將△ADE繞點A逆時針方向旋轉(zhuǎn)一定的角度,連接CE和BD,的值變化嗎?若變化,請說明理由;若不變化,請求出不變的值;
(3)如圖3,在四邊形ABCD中,AC⊥BC于點C,∠BAC=∠ADC=θ,且tanθ=,當(dāng)CD=6,AD=3時,請直接寫出線段BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)請直接寫出D點的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形OABC的頂點A的坐標(biāo)為(4,0),O為坐標(biāo)原點,點B在第一象限,連接AC, tan∠ACO=2,D是BC的中點,
(1)求點D的坐標(biāo);
(2)如圖2,M是線段OC上的點,OM=OC,點P是線段OM上的一個動點,經(jīng)過P、D、B三點的拋物線交 軸的正半軸于點E,連接DE交AB于點F.
①將△DBF沿DE所在的直線翻折,若點B恰好落在AC上,求此時點P的坐標(biāo);
②以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當(dāng)動點P從點O運動到點M時,點G也隨之運動,請直接寫出點G運動的路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線l:y=﹣x2+bx+c(b,c為常數(shù)),其頂點E在正方形ABCD內(nèi)或邊上,已知點A(1,2),B(1,1),C(2,1).
(1)直接寫出點D的坐標(biāo)_____________;
(2)若l經(jīng)過點B,C,求l的解析式;
(3)設(shè)l與x軸交于點M,N,當(dāng)l的頂點E與點D重合時,求線段MN的值;當(dāng)頂點E在正方形ABCD內(nèi)或邊上時,直接寫出線段MN的取值范圍;
(4)若l經(jīng)過正方形ABCD的兩個頂點,直接寫出所有符合條件的c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點A(﹣3,0),B(1,0),交y軸正半軸于點D,拋物線頂點為C.下列結(jié)論:①2a﹣b=0;②a+b+c=0;③a﹣b>am2+bm;④當(dāng)△ABC是等腰直角三角形時,a=﹣0.5;⑤若D(0,3),則拋物線的對稱軸直線x=﹣1上的動點P與B、D兩點圍成的△PBD周長最小值為.其中,正確的個數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù),下列說法不正確的是( )
A.其圖象的對稱軸為過且平行于軸的直線.
B.其最小值為1.
C.其圖象與軸沒有交點.
D.當(dāng)時,隨的增大而增大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com