【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點(diǎn)A(﹣3,0),B(1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論:①2a﹣b=0;②a+b+c=0;③a﹣b>am2+bm;④當(dāng)△ABC是等腰直角三角形時(shí),a=﹣0.5;⑤若D(0,3),則拋物線的對稱軸直線x=﹣1上的動(dòng)點(diǎn)P與B、D兩點(diǎn)圍成的△PBD周長最小值為.其中,正確的個(gè)數(shù)為_____.
【答案】4
【解析】
利用待定系數(shù)法,二次函數(shù)的性質(zhì),等腰直角三角形的性質(zhì),兩點(diǎn)之間線段最短一一判斷即可.
解:把A(﹣3,0),B(1,0)代入y=ax2+bx+c得到 ,
消去c得到2a﹣b=0,故①②正確,
∵拋物線的對稱軸直線x==﹣1,開口向下,
∴x=﹣1時(shí),y有最大值,最大值=a﹣b+c,
∵m≠﹣1,
∴a﹣b+c>am2+bm+c,
∴a﹣b>am2+bm,故③正確,
當(dāng)△ABC是等腰直角三角形時(shí),則CE=BE=2,
∴C(﹣1,2),
可以假設(shè)拋物線的解析式為y=a(x+1)2+2,把(1,0)代入得到a=﹣0.5,故④正確,
如圖,連接AD交拋物線的對稱軸于P,連接PB,此時(shí)△BDP的周長最小,最小值=PD+PB+BD=PD+PA+BD=AD+BD,
∵AD==3,BD==,
∴△△PBD周長最小值為3+,故⑤錯(cuò)誤.
故答案為4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,給出下列說法:
①;②方程的根為,;③;④當(dāng)時(shí),隨值的增大而增大;⑤當(dāng)時(shí),.其中,正確的說法有________(請寫出所有正確說法的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),連接DE,點(diǎn)F為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證△ADF∽△DEC;
(2)若BE=2,AD=6,且DF=DE,求DF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC,△CDE都是等邊三角形.
(1)寫出AE與BD的大小關(guān)系.
(2)若把△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)到圖②的位置時(shí),上述(1)的結(jié)論仍成立嗎?請說明理由.
(3)△ABC的邊長為5,△CDE的邊長為2,把△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一周后回到圖①位置,求出線段AE長的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司研制出新產(chǎn)品,該產(chǎn)品的成本為每件2400元.在試銷期間,購買不超過10件時(shí),每件銷售價(jià)為3000元;購買超過10件時(shí),每多購買一件,所購產(chǎn)品的銷售單價(jià)均降低5元,但最低銷售單價(jià)為2600元。請解決下列問題:
(1)直接寫出:購買這種產(chǎn)品 ________件時(shí),銷售單價(jià)恰好為2600元;
(2)設(shè)購買這種產(chǎn)品x件(其中x>10,且x為整數(shù)),該公司所獲利潤為y元,求y與x之間的函數(shù)表達(dá)式;
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)購買產(chǎn)品的件數(shù)超過10件時(shí),會(huì)出現(xiàn)隨著數(shù)量的增多,公司所獲利潤反而減少這一情況.為使購買數(shù)量越多,公司所獲利潤越大,公司應(yīng)將最低銷售單價(jià)調(diào)整為多少元?(其它銷售條件不變)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中所示的拋物線形拱橋,當(dāng)拱頂離水面4m時(shí),水面寬8m.水面上升3米,水面寬度減少多少?下面給出了解決這個(gè)問題的兩種建系方法.
方法一如圖1,以上升前的水面所在直線與拋物線左側(cè)交點(diǎn)為原點(diǎn),以上升前的水面所在直線為x軸,建立平面直角坐標(biāo)系xOy;
方法二如圖2,以拋物線頂點(diǎn)為原點(diǎn),以拋物線的對稱軸為y軸,建立平面直角坐標(biāo)系xOy,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖一段拋物線y=x2﹣3x(0≤x≤3),記為C1,它與x軸于點(diǎn)O和A1:將C1繞旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞旋轉(zhuǎn)180°得到C3,交x軸于A3,如此進(jìn)行下去,若點(diǎn)P(2020,m)在某段拋物線上,則m的值為( 。
A.0B.﹣C.2D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表.
調(diào)查結(jié)果統(tǒng)計(jì)表
組別 | 分組(單位:元) | 人數(shù) |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
請根據(jù)以上圖表,解答下列問題:
(1)填空:這次被調(diào)查的同學(xué)共有__人,a+b=__,m=___;
(2)求扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù);
(3)該校共有學(xué)生1000人,請估計(jì)每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊邊長為的正方形,使點(diǎn)落在邊上的點(diǎn)處(不與點(diǎn),重合),點(diǎn)落在點(diǎn)處,折痕分別與邊、交于點(diǎn)、,與邊交于點(diǎn).證明:
(1);
(2)若為中點(diǎn),則;
(3)的周長為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com