(1998•黃岡)如圖,已知四邊形ABCD是正方形,分別過A、C兩點作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直線MB、ND分別交l2于Q、P.求證:四邊形PQMN是正方形.
分析:可由Rt△ABM≌Rt△DAN,AM=DN同理可得AN=NP,所以MN=PN,進(jìn)而可得其為正方形.
解答:證明:l1∥l2,BM⊥l1,DN⊥l2
∴∠QMN=∠P=∠N=90°,
∴四邊形PQMN為矩形,
∵AB=AD,∠M=∠N=90°
∠ADN+∠NAD=90°,∠NAD+∠BAM=90°,
∴∠ADN=∠BAM,
又∵AD=BA,
∴Rt△ABM≌Rt△DAN(HL),
∴AM=DN
同理AN=DP,
∴AM+AN=DN+DP,即MN=PN.
∴四邊形PQMN是正方形.
點評:本題考查了矩形的判定和性質(zhì)、全等三角形的判定和性質(zhì)以及正方形的判定,解題的關(guān)鍵是熟練掌握各種幾何圖形的性質(zhì)和判定方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1998•黃岡)如圖,PA、PB是⊙O的兩條切線,A、B為切點,直線OP交⊙O于C、D,交AB于E,AF為⊙O的直徑,下列結(jié)論:①∠ABP=∠AOP;②
BC
=
DF
;③PC•PD=PE•PO.其中正確結(jié)論的個數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•黃岡)如圖,直角坐標(biāo)系中,O為坐標(biāo)原點,A點坐標(biāo)為(-3,0),B點坐標(biāo)為(12,0),以AB為直徑作⊙P與y軸的負(fù)半軸交于點C.拋物線y=ax2+bx+c經(jīng)過A、B、C三點,其頂點為M點.
(1)求此拋物線的解析式;
(2)設(shè)點D是拋物線與⊙P的第四個交點(除A、B、C三點以外),求直線MD的解析式;
(3)判定(2)中的直線MD與⊙P的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•黃岡)如圖,⊙O是△ABC的外接圓,BC是直徑,以頂點A為圓心,AB長為半徑的圓交⊙O于F點,交BC于G點(AB<OB).AD⊥BC于D,AD與BF交于E點,OF交⊙A于H點.求證:
(1)△ABE是等腰三角形;
(2)
FH
2AE
=
BF
BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省三明市大田二中自主招生數(shù)學(xué)模擬試卷(3)(解析版) 題型:填空題

(1998•黃岡)如圖,⊙O是△ABC的外接圓,AD是BC邊上的高,已知BD=8,CD=3,AD=6,則直徑AM的長為   

查看答案和解析>>

同步練習(xí)冊答案