【題目】如圖,某小區(qū)有一塊長為30m,寬為24m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為多少米.

【答案】2

【解析】試題分析:設(shè)人行通道的寬度為x米,將兩塊矩形綠地合在一起長為(30﹣3xm,寬為(24﹣2xm,根據(jù)矩形綠地的面積為480m2,即可列出關(guān)于x的一元二次方程,解方程即可得出x的值,經(jīng)檢驗后得出x=20不符合題意,此題得解.

試題解析:設(shè)人行通道的寬度為x米,將兩塊矩形綠地合在一起長為(30﹣3xm,寬為(24﹣2xm,

由已知得:(30﹣3x24﹣2x=480

整理得:x2﹣22x+40=0,

解得:x1=2x2=20,

當(dāng)x=20時,30﹣3x=﹣3024﹣2x=﹣16,

不符合題意,

故人行通道的寬度為2米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中過一點有且只有一條直線與已知直線平行;在同一平面內(nèi),過一點有且只有一條直線與已知直線垂直;兩直線平行,同旁內(nèi)角互補(bǔ);直線外一點到已知直線的垂線段就是點到直線的距離,其中正確的有(  )個

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了倡導(dǎo)低碳交通,方便市民出行,某市推出了公共自行車系統(tǒng),收費以小時為單位,每次使用不超過1小時的免費,超過1小時后,不足1小時的部分按1小時收費,小聰同學(xué)通過調(diào)查得知,自行車使用時間為3小時,收費2元;使用時間為4小時,收費3元.她發(fā)現(xiàn)當(dāng)使用時間超過1小時后用車費與使用時間之間存在一次函數(shù)的關(guān)系.
(1)設(shè)使用自行車的費用為y元,使用時間為x小時(x為大于1的整數(shù)),求y與x的函數(shù)解析式;
(2)若小聰此次使用公共自行車6小時,則她應(yīng)付多少元費用?
(3)若小聰此次使用公共自行車付費7元,請說明她所使用的時間的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=,D,E分別為ACAB的中點,BFCEDE的延長線于點F.

(1)求證:四邊形ECBF是平行四邊形;

(2) 當(dāng)∠A=時,求證:四邊形ECBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三沙市一艘海監(jiān)船某天在黃巖鳥P附近海域由南向北巡航,某一時刻航行到A處,測得該島在北偏東30°方向,海監(jiān)船以20海里/時的速度繼續(xù)航行,2小時后到達(dá)B處,測得該島在北偏東75°方向,求此時海監(jiān)船與黃巖島P的距離BP的長.(參考數(shù)據(jù): ≈1.414,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了“讀好書,助成長”系列活動,并準(zhǔn)備購置一批圖書,購書前 ,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,根據(jù)統(tǒng)計圖所提供的信息,回答下列問題:

(1)本次調(diào)查共抽查了 名學(xué)生,兩幅統(tǒng)計圖中的m= ,n= .

(2)已知該校共有960名學(xué)生,請估計該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?

(3)學(xué)校要舉辦讀書知識競賽,七年(1)班要在班級優(yōu)勝者2男1女中隨機(jī)選送2人參賽,求選送的兩名參賽學(xué)生為1男1女的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的一個內(nèi)角是50°,則另外兩個角的度數(shù)分別是(  )

A. 65°,65° B. 50°,80°

C. 65°,65°或50°,80° D. 50°,50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小方格都是邊長為1的正方形,我們把以格點連線為邊的多邊形稱為“格點多邊形”.如圖(一)中四邊形ABCD就是一個“格點四邊形”.
(1)作出四邊形ABCD關(guān)于直線BD對稱的四邊形A′B′C′D′;
(2)求圖(一)中四邊形ABCD的面積;
(3)在圖(二)方格紙中畫一個格點三角形EFG,使△EFG的面積等于四邊形ABCD的面積且△EFG為軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣2,1,2,1,4,6中正確的是(

A. 平均數(shù)3 B. 眾數(shù)是﹣2 C. 中位數(shù)是1 D. 極差為8

查看答案和解析>>

同步練習(xí)冊答案