【題目】如圖,已知△ABC中,∠C=90°AC=BC=,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△的位置,連接,則的長(zhǎng)為(

A.2B.C.D.1

【答案】C

【解析】

如圖,連接BB′,延長(zhǎng)BC′交AB′于點(diǎn)M;證明△ABC′≌△BBC′,得到∠MBB=MBA=30°;求出BMCM的長(zhǎng),即可解決問(wèn)題.

解:如圖,連接BB′,延長(zhǎng)BC′交AB′于點(diǎn)M;

由題意得:∠BAB=60°,BA=BA

∴△ABB′為等邊三角形,

∴∠ABB=60°,AB=BB;

在△ABC′與△BBC′中,

∴△ABC′≌△BBC′(SSS),

∴∠MBB=MBA=30°,

BMAB′,且AM=BM;

由題意得:AB2,

AB=AB=2,AM=1,

CM=AB=1;

由勾股定理可求:

BM=,

CB=

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A1,A2,A3是拋物線yx2+1x0)上的三點(diǎn),且A1A2,A3三點(diǎn)的橫坐標(biāo)為連續(xù)的整數(shù),連接A1A3,過(guò)A2A2Qx軸于點(diǎn)Q,交A1A3于點(diǎn)P,則線段PA2的長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明隨機(jī)調(diào)查了若干市民租用共享單車(chē)的騎車(chē)時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0t10,B:10t20,C:20t30,D:t30),根據(jù)圖中信息,解答下列問(wèn)題:

(1)這項(xiàng)被調(diào)查的總?cè)藬?shù)是多少人?

(2)試求表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;

(3)如果小明想從D組的甲、乙、丙、丁四人中隨機(jī)選擇兩人了解平時(shí)租用共享單車(chē)情況,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是一塊等邊三角形的廢鐵片,其中AB=AC=10,BC=12.利用其剪裁一個(gè)正方形DEFG,使正方形的一條邊DE落在BC上,頂點(diǎn)F G分別落在AC、AB上.

1)小聰想:要畫(huà)出正方形DEFG,只要能計(jì)算出正方形的邊長(zhǎng)就能求出BDCE的長(zhǎng),從而確定D點(diǎn)和E點(diǎn),再畫(huà)正方形DEFG就容易了.請(qǐng)你幫小聰求出正方形的邊長(zhǎng).

2)小明想:不求正方形的邊長(zhǎng)也能畫(huà)出正方形.具體作法是:

①在AB邊上任取一點(diǎn)G′,如圖2作正方形G′D′E′F′;

②連接BF′并延長(zhǎng)交AC于點(diǎn)F;

③過(guò)點(diǎn)FFEF′E′BC于點(diǎn)E,FGF′G′AB于點(diǎn)G,GDG′D′BC于點(diǎn)D,則四邊形DEFG即為所求的正方形.你認(rèn)為小明的作法正確嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑AB10cm,弦AC6cm,

1)用尺規(guī)作圖畫(huà)出∠ACB的平分線交⊙O于點(diǎn)D.(不要寫(xiě)作法,保留作圖痕跡)

2)分別連接點(diǎn)ADBD,求弦BC、ADBD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為-8.

1)求該拋物線的解析式;

2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)Px軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PEAB于點(diǎn)E.

①設(shè)PDE的周長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;

②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)FG恰好落在y軸上時(shí),直接寫(xiě)出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)公,作為運(yùn)城乃至山西的一張名片,吸引了來(lái)自世界各地的游客,在運(yùn)城西南公里的常平村(關(guān)公故鄉(xiāng))南山上,有一尊巨型關(guān)公銅像,高米,象征關(guān)公享年歲,底座的高度也有一定寓意.有一位游客,對(duì)此產(chǎn)生了興趣,想測(cè)量它的高度,由于游客無(wú)法直接到達(dá)銅像底部,因此該游客計(jì)劃借助坡面高度來(lái)測(cè)量它的高度.如圖,代表底座的高,坡頂與底座底部處在同一水平面上,該游客在斜坡底處測(cè)得該底座頂端的仰角為,然后他沿著坡度為的斜坡攀行了米,在坡頂處又測(cè)得該底座頂端的仰角為.求:

坡頂到地面的距離;

求底座的高度(結(jié)果精確到)

(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的頂點(diǎn)的坐標(biāo)分別為A(2,2),B(1,0),C(3,1)

(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的;

(2)畫(huà)出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的△A2B1C2,寫(xiě)出點(diǎn)C2的坐標(biāo);

(3)(1)(2)的基礎(chǔ)上,圖中的,關(guān)于哪個(gè)點(diǎn)中心對(duì)稱(chēng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠BAC=90°AB=3,AC=4,點(diǎn)DBC的中點(diǎn),將ABD沿AD翻折得到AED,連CE

1)求證:AD=ED

2)連接BE,猜想BEC的形狀,并說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案