【題目】如圖,⊙O的直徑AB為10cm,弦AC為6cm,
(1)用尺規(guī)作圖畫(huà)出∠ACB的平分線(xiàn)交⊙O于點(diǎn)D.(不要寫(xiě)作法,保留作圖痕跡)
(2)分別連接點(diǎn)AD和BD,求弦BC、AD、BD的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)BC=8,AD=BD=5.
【解析】
(1)根據(jù)角平分線(xiàn)的尺規(guī)作圖方法即可;
(2)根據(jù)勾股定理即可計(jì)算.
解:(1)如圖1,CD即為所求;
(2)如圖2,∵AB是直徑,
∴∠ACB=∠ADB=90°,
在Rt△ABC中,AB2=AC2+BC2,AB=10cm,AC=6cm,
∴BC2=AB2﹣AC2=102﹣62=64,
∴BC=8cm,
又CD平分∠ACB,
∴∠ACD=∠BCD,
∴,
∴AD=BD,
又在Rt△ABD中,AD2+BD2=AB2,
∴AD2+BD2=102,
∴AD=BD=5 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)C,交AB于點(diǎn)D.已知AB=4,BC=.
(1)若OA=4,求k的值;
(2)連接OC,若BD=BC,求OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于C,D兩點(diǎn),與x,y軸交于B,A兩點(diǎn),CE⊥x軸于點(diǎn)E,且tan∠ABO=,OB=4,OE=1.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫(xiě)出一次函數(shù)的值大于反比例函數(shù)的值時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,AD=4cm,EF經(jīng)過(guò)對(duì)角線(xiàn)BD的中點(diǎn)O,分別交AD,BC于點(diǎn)E,F.
(1)求證:△BOF≌△DOE;
(2)當(dāng)EF⊥BD時(shí),求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC=10,BC=16,點(diǎn)D為BC邊上的動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合).以D為頂點(diǎn)作∠ADE=∠B,射線(xiàn)DE交AC邊于點(diǎn)E,過(guò)點(diǎn)A作AF⊥AD交射線(xiàn)DE于點(diǎn)F,連接CF.
(1)求證:△ABD∽△DCE;
(2)當(dāng)DE∥AB時(shí)(如圖2),求AE的長(zhǎng);
(3)點(diǎn)D在BC邊上運(yùn)動(dòng)的過(guò)程中,是否存在某個(gè)位置,使得DF=CF?若存在,求出此時(shí)BD的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△的位置,連接,則的長(zhǎng)為( )
A.2B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角尺(在中,,,在中,,)如圖擺放,點(diǎn)為的中點(diǎn),交于點(diǎn),經(jīng)過(guò)點(diǎn),將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)(),交于點(diǎn),交于點(diǎn),則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐:
概念理解:將△ABC 繞點(diǎn) A 按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角記為 θ(0°≤θ≤90°),并使各邊長(zhǎng)變?yōu)樵瓉?lái)的 n 倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],: .
問(wèn)題解決:(2)如圖,在△ABC 中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得到△AB′C′,使點(diǎn) B,C,C′在同一直線(xiàn)上,且四邊形 ABB′C′為矩形,求 θ 和 n 的值.
拓廣探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,對(duì)△ABC作變換 得到△AB′C′,則四邊形 ABB′C′為正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(知識(shí)回顧)
七年級(jí)學(xué)習(xí)代數(shù)式求值時(shí),遇到這樣一類(lèi)題“代數(shù)式ax﹣y+6+3x﹣5y﹣1的值與x的取值無(wú)關(guān),求a的值”,通常的解題方法是把x、y看作字母,a看作系數(shù)合并同類(lèi)項(xiàng),因?yàn)榇鷶?shù)式的值與x的取值無(wú)關(guān),所以含x項(xiàng)的系數(shù)為0,即原式=(a+3)x﹣6y+5,所以a+3=0,則a=﹣3.
(理解應(yīng)用)
(1)若關(guān)于x的多項(xiàng)式(2x﹣3)m+2m2﹣3x的值與x的取值無(wú)關(guān),試求m的值;
(2)若一次函數(shù)y=2kx+1﹣4k的圖象經(jīng)過(guò)某個(gè)定點(diǎn),則該定點(diǎn)坐標(biāo)為 ;
(能力提升)
(3)7張如圖1的小長(zhǎng)方形,長(zhǎng)為a,寬為b.按照?qǐng)D2方式不重疊地放在大矩形ABCD內(nèi),大矩形中未被覆蓋的兩個(gè)部分(圖中陰影部分),設(shè)右上角的面積為S1,左下角的面積為S2,當(dāng)AB的長(zhǎng)變化時(shí),S1﹣S2的值始終保持不變.求a與b的等量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com