【題目】綜合與探究

如圖,已知拋物線軸交于兩點(diǎn),與軸交于點(diǎn),對(duì)稱軸為直線,頂點(diǎn)為.

(1)求拋物線的解析式及點(diǎn)坐標(biāo);

(2)在直線上是否存在一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)軸上取一動(dòng)點(diǎn),過點(diǎn)軸的垂線,分別交拋物線,,于點(diǎn),,.

①判斷線段的數(shù)量關(guān)系,并說明理由

②連接,,,當(dāng)為何值時(shí),四邊形的面積最大?最大值為多少?

【答案】(1),點(diǎn)坐標(biāo)為(2)點(diǎn)的坐標(biāo)為;(3);②當(dāng)-2時(shí),四邊形的面積最大,最大值為4.

【解析】

1)用待定系數(shù)法即可求出拋物線解析式,然后化為頂點(diǎn)式求出點(diǎn)D的坐標(biāo)即可;

2)利用軸對(duì)稱-最短路徑方法確定點(diǎn)M,然后用待定系數(shù)法求出直線AC的解析式,進(jìn)而可求出點(diǎn)M的坐標(biāo);

3)①先求出直線AD的解析式,表示出點(diǎn)F、G、P的坐標(biāo),進(jìn)而表示出FGFP的長(zhǎng)度,然后即可判斷出線段的數(shù)量關(guān)系;

②根據(jù)割補(bǔ)法分別求出△AED和△ACD的面積,然后根據(jù)列出二次函數(shù)解析式,利用二次函數(shù)的性質(zhì)求解即可.

解:(1)由拋物線軸交于,兩點(diǎn)得,

解得,

故拋物線解析式為,

得點(diǎn)坐標(biāo)為;

(2)在直線上存在一點(diǎn),到點(diǎn)的距離與到點(diǎn)的距離之和最小.

根據(jù)拋物線對(duì)稱性,

,

使的值最小的點(diǎn)應(yīng)為直線與對(duì)稱軸的交點(diǎn),

當(dāng)時(shí),,

,

設(shè)直線解析式為直線

、分別代入

,解之得:,

直線解析式為

代入得,,

,

即當(dāng)點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小時(shí)的坐標(biāo)為;

(3)①,

理由為:

設(shè)直線解析式為,

、分別代入直線

,解之得:,

直線解析式為

則點(diǎn)的坐標(biāo)為

同理的坐標(biāo)為,

,,

;

, ,,

AO=3,DM=2

SACD=SADM+SCDM=.

設(shè)點(diǎn)的坐標(biāo)為,

,

當(dāng)-2時(shí),的最大值為1.

,

當(dāng)-2時(shí),四邊形的面積最大,最大值為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)過,兩點(diǎn),將點(diǎn)B到該拋物線對(duì)稱軸的距離記作,且滿足,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中,直線軸交于點(diǎn),經(jīng)過點(diǎn)的拋物線的對(duì)稱軸是

1)求拋物線的解析式.

2)平移直線經(jīng)過原點(diǎn),得到直線,點(diǎn)是直線上任意一點(diǎn),軸于點(diǎn),軸于點(diǎn),若點(diǎn)在線段上,點(diǎn)在線段的延長(zhǎng)線上,連接,且.求證:

3)若(2)中的點(diǎn)坐標(biāo)為,點(diǎn)軸上的點(diǎn),點(diǎn)軸上的點(diǎn),當(dāng)時(shí),拋物線上是否存在點(diǎn),使四邊形是矩形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線a≠0)與y軸交與點(diǎn)C03),與x軸交于AB兩點(diǎn),點(diǎn)B坐標(biāo)為(4,0),拋物線的對(duì)稱軸方程為x=1

1)求拋物線的解析式;

2)點(diǎn)MA點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)NB點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)△MBN的面積為S,點(diǎn)M運(yùn)動(dòng)時(shí)間為t,試求St的函數(shù)關(guān)系,并求S的最大值;

3)在點(diǎn)M運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共和國(guó)勛章是中華人民共和國(guó)的最高榮譽(yù)勛章,在2019年獲得共和國(guó)勛章的八位杰出人物中,有于敏、孫家棟、袁隆平、黃旭華四位院士.如圖是四位院士(依次記為、、、).為讓同學(xué)們了解四位院士的貢獻(xiàn),老師設(shè)計(jì)如下活動(dòng):取四張完全相同的卡片,分別寫上、、、四個(gè)標(biāo)號(hào),然后背面朝上放置,攪勻后每個(gè)同學(xué)從中隨機(jī)抽取一張,記下標(biāo)號(hào)后放回,老師要求每位同學(xué)依據(jù)抽到的卡片上的標(biāo)號(hào)查找相應(yīng)院士的資料,并做成小報(bào).

(1)班長(zhǎng)在四種卡片中隨機(jī)抽到標(biāo)號(hào)為C的概率為______.

(2)請(qǐng)用畫樹狀圖或列表的方法求小明和小華查找不同院士資料的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,已知ABAC,BC平分∠ABD

(1) 若∠A100°,則∠1的度數(shù)為_________

(2) 判斷ACBD的位置關(guān)系,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=5,AF平分∠DAEEFAE,則CF=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線yx2x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)yx2+bx+c的圖象經(jīng)過BC兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A

1)直接寫出:b的值為   c的值為   ;點(diǎn)A的坐標(biāo)為   ;

2)點(diǎn)M是線段BC上的一動(dòng)點(diǎn),動(dòng)點(diǎn)D在直線BC下方的二次函數(shù)圖象上.設(shè)點(diǎn)D的橫坐標(biāo)為m

如圖1,過點(diǎn)DDMBC于點(diǎn)M,求線段DM關(guān)于m的函數(shù)關(guān)系式,并求線段DM的最大值;

若△CDM為等腰直角三角形,直接寫出點(diǎn)M的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分,交于點(diǎn),點(diǎn)上,經(jīng)過兩點(diǎn),交于點(diǎn),交于點(diǎn).

1)求證:的切線;

2)若的半徑是,是弧的中點(diǎn),求陰影部分的面積(結(jié)果保留和根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案