【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)a≠0)與y軸交與點(diǎn)C03),與x軸交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(4,0),拋物線(xiàn)的對(duì)稱(chēng)軸方程為x=1

1)求拋物線(xiàn)的解析式;

2)點(diǎn)MA點(diǎn)出發(fā),在線(xiàn)段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)NB點(diǎn)出發(fā),在線(xiàn)段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)△MBN的面積為S,點(diǎn)M運(yùn)動(dòng)時(shí)間為t,試求St的函數(shù)關(guān)系,并求S的最大值;

3)在點(diǎn)M運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2S=,運(yùn)動(dòng)1秒使△PBQ的面積最大,最大面積是;(3t=t=

【解析】

1)把點(diǎn)A、B、C的坐標(biāo)分別代入拋物線(xiàn)解析式,列出關(guān)于系數(shù)a、bc的解析式,通過(guò)解方程組求得它們的值;

2)設(shè)運(yùn)動(dòng)時(shí)間為t秒.利用三角形的面積公式列出SMBNt的函數(shù)關(guān)系式.利用二次函數(shù)的圖象性質(zhì)進(jìn)行解答;

3)根據(jù)余弦函數(shù),可得關(guān)于t的方程,解方程,可得答案.

1點(diǎn)B坐標(biāo)為(4,0),拋物線(xiàn)的對(duì)稱(chēng)軸方程為x=1,

∴A(﹣2,0),把點(diǎn)A(﹣2,0)、B4,0)、點(diǎn)C0,3),

分別代入a≠0),得:,解得:,所以該拋物線(xiàn)的解析式為:

2)設(shè)運(yùn)動(dòng)時(shí)間為t秒,則AM=3tBN=t,∴MB=63t

由題意得,點(diǎn)C的坐標(biāo)為(0,3).在Rt△BOC中,BC==5

如圖1,過(guò)點(diǎn)NNH⊥AB于點(diǎn)H,

∴NH∥CO

∴△BHN∽△BOC,

,即

∴HN=t,

∴SMBN=MBHN=63tt,

S=,

當(dāng)△PBQ存在時(shí),0t2,

當(dāng)t=1時(shí),SPBQ最大=

答:運(yùn)動(dòng)1秒使△PBQ的面積最大,最大面積是;

3)如圖2,在Rt△OBC中,cos∠B=

設(shè)運(yùn)動(dòng)時(shí)間為t秒,則AM=3t,BN=t∴MB=63t

當(dāng)∠MNB=90°時(shí),cos∠B=,即,化簡(jiǎn),得17t=24,解得t=;

當(dāng)∠BMN=90°時(shí),cos∠B=,化簡(jiǎn),得19t=30,解得t=

綜上所述:t=t=時(shí),△MBN為直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】廣宇、承義兩名同學(xué)分別進(jìn)行5次射擊訓(xùn)練,訓(xùn)練成績(jī)(單位:環(huán))如下表:

第一次

第二次

第三次

第四次

第五次

廣宇

9

8

7

7

9

承義

6

8

10

8

8

對(duì)他們的訓(xùn)練成績(jī)作如下分析,其中說(shuō)法正確的是(

A.廣宇訓(xùn)練成績(jī)的平均數(shù)大于承義訓(xùn)練成績(jī)平均數(shù)

B.廣宇訓(xùn)練成績(jī)的中位數(shù)與承義訓(xùn)練成績(jī)中位數(shù)不同

C.廣宇訓(xùn)練成績(jī)的眾數(shù)與承義訓(xùn)練成績(jī)眾數(shù)相同

D.廣宇訓(xùn)練成績(jī)比承義訓(xùn)練成績(jī)更加穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知C是線(xiàn)段AB上的一點(diǎn),分別以AC、BC為邊在線(xiàn)段AB同側(cè)作正方形ACDE和正方形CBGF,點(diǎn)FCD上,聯(lián)結(jié)AF、BDBDFG交于點(diǎn)M,點(diǎn)N是邊AC上的一點(diǎn),聯(lián)結(jié)ENAF 與點(diǎn)H

1)求證:AF=BD;

2)如果,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接2022年冬奧會(huì),鼓勵(lì)更多的大學(xué)生參與到志愿服務(wù)中,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊(duì)選拔活動(dòng),經(jīng)過(guò)初選,兩所學(xué)校各有300名學(xué)生進(jìn)入綜合素質(zhì)展示環(huán)節(jié),為了了解這些學(xué)生的整體情況,從兩校進(jìn)入綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析,下面給出了部分信息.

a.甲學(xué)校學(xué)生成績(jī)的頻數(shù)分布直方圖如圖(數(shù)據(jù)分成6組:,,,,,).

b.甲學(xué)校學(xué)生成績(jī)?cè)?/span>這一組是:

80 80 81 81.5 82 83 83 84

85 86 86.5 87 88 88.5 89 89

c.乙學(xué)校學(xué)生成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

83.3

84

78

46%

根據(jù)以上信息,回答下列問(wèn)題:

1)甲學(xué)校學(xué)生,乙學(xué)校學(xué)生的綜合素質(zhì)展示成績(jī)同為82分,這兩人在本校學(xué)生中綜合素質(zhì)展示排名更靠前的是________(填“”或“”);

2)根據(jù)上述信息,推斷________學(xué)校綜合素質(zhì)展示的水平更高,理由為:__________________________

(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性).

3)若每所學(xué)校綜合素質(zhì)展示的前120名學(xué)生將被選入志愿服務(wù)團(tuán)隊(duì),預(yù)估甲學(xué)校分?jǐn)?shù)至少達(dá)到________分的學(xué)生才可以入選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱(chēng)軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));當(dāng)﹣1<x<3時(shí),y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】發(fā)現(xiàn)思考:已知等腰三角形ABC的兩邊分別是方程x2﹣7x+10=0的兩個(gè)根,求等腰三角形ABC三條邊的長(zhǎng)各是多少?下邊是涵涵同學(xué)的作業(yè),老師說(shuō)他的做法有錯(cuò)誤,請(qǐng)你找出錯(cuò)誤之處并說(shuō)明錯(cuò)誤原因.

涵涵的作業(yè)

解:x2﹣7x+10=0

a=1 b=﹣7 c=10

b2﹣4ac=9>0

x==

x1=5,x2=2

所以,當(dāng)腰為5,底為2時(shí),等腰三角形的三條邊為5,5,2.

當(dāng)腰為2,底為5時(shí),等腰三角形的三條邊為2,2,5.

探究應(yīng)用:請(qǐng)解答以下問(wèn)題:

已知等腰三角形ABC的兩邊是關(guān)于x的方程x2﹣mx+=0的兩個(gè)實(shí)數(shù)根.

(1)當(dāng)m=2時(shí),求ABC的周長(zhǎng);

(2)當(dāng)ABC為等邊三角形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)EBC邊的中點(diǎn),動(dòng)點(diǎn)MCD邊上運(yùn)動(dòng),以EM為折痕將△CEM折疊得到△PEM,連接PA,若AB=4,∠BAD=60°,則PA的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD60°,AB=4,以點(diǎn)B為圓心,BD長(zhǎng)為半徑的扇形EBFAD,CD交于點(diǎn)G,H,且GH分別為AD,CD邊上的中點(diǎn),則陰影部分的面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平和中學(xué)以小元所在班級(jí)為例,對(duì)該班學(xué)生最喜愛(ài)參加的各類(lèi)體育運(yùn)動(dòng)項(xiàng)目的情況進(jìn)行了調(diào)査統(tǒng)計(jì)(最喜愛(ài)的項(xiàng)目只能選一項(xiàng)).并把調(diào)查的結(jié)果繪制成了如下圖所示的兩種不完全統(tǒng)計(jì)圖,請(qǐng)你根據(jù)信息回答下列問(wèn)題:

1)小元所在的班級(jí)共有多少名學(xué)生?

2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖

3)如果平和中學(xué)總計(jì)有800名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡參加籃球和最喜歡乒乓球運(yùn)動(dòng)共有多少人.

查看答案和解析>>

同步練習(xí)冊(cè)答案