【題目】下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的有( )個.
A.0B.1C.2D.3
科目:初中數學 來源: 題型:
【題目】在籃球比賽中,東東投出的球在點A處反彈,反彈后球運動的路線為拋物線的一部分(如圖1所示建立直角坐標系),拋物線頂點為點B.
(1)求該拋物線的函數表達式.
(2)當球運動到點C時被東東搶到,CD⊥x軸于點D,CD=2.6m.
①求OD的長.
②東東搶到球后,因遭對方防守無法投籃,他在點D處垂直起跳傳球,想將球沿直線快速傳給隊友華華,目標為華華的接球點E(4,1.3).東東起跳后所持球離地面高度h1(m)(傳球前)與東東起跳后時間t(s)滿足函數關系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在點F(1.5,0)處攔截,他比東東晚0.3s垂直起跳,其攔截高度h2(m)與東東起跳后時間t(s)的函數關系如圖2所示(其中兩條拋物線的形狀相同).東東的直線傳球能否越過小戴的攔截傳到點E?若能,東東應在起跳后什么時間范圍內傳球?若不能,請說明理由(直線傳球過程中球運動時間忽略不計).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】疫情防控期間,學校開學初購進A、B兩種消毒液,購買A種消毒液花費2500元,購買B種消毒液花費2000元,且A種消毒液數量是B種消毒液數量的2倍,一桶B種消毒液比一桶A種消毒液貴30元.
(1)求購買一桶A種、一桶B種消毒液各需多少元?
(2)為了加強防控,學校準備再次購買A、B兩種消毒液共50桶,A種消毒液售價比第一次提高了8%,B種消毒液按第一次售價的9折出售,如果此次購買總費用不超過3260元,那么學校此次最多可購買多少桶B種消毒液?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在研究相似問題時,甲、乙同學的觀點如下:
甲:將邊長為3、4、5的三角形按圖1的方式向外擴張,得到新三角形,它們的對應邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應邊間距均為1,則新矩形與原矩形相似.
對于兩人的觀點,下列說法正確的是( )
A.甲對,乙不對 B.甲不對,乙對 C.兩人都對 D.兩人都不對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,專業(yè)救助船“滬救1”輪、“滬救2”輪分別位于A、B兩處,同時測得事發(fā)地點C在A的南偏東60°且C在B的南偏東30°上.已知B在A的正東方向,且相距100里,請分別求出兩艘船到達事發(fā)地點C的距離.(注:里是海程單位,相當于一海里.結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知為坐標原點,點是反比例函數上的點,過點作直線,直線交軸的正半軸于點,點的坐標為.設三角形的面積為,且.
(1)當時,求點的坐標;
(2)若,求反比例函數的解析式;
(3)在(2)的結論下,設反比例函數上的一動點,是小于20的整數,求的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面內容:我們已經學習了《二次根式》和《乘法公式》,聰明的你可以發(fā)現:當,時,∵,∴,當且僅當時取等號.請利用上述結論解決以下問題:
(1)當時,的最小值為_______;當時,的最大值為__________.
(2)當時,求的最小值.
(3)如圖,四邊形ABCD的對角線AC ,BD相交于點O,△AOB、△COD的面積分別為4和9,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為4的正方形中,點、分別是、的中點,、交于點,的中點為,連接、.給出下列結論:①;②;③;④.其中正確的結論有________.(請?zhí)钌纤姓_結論的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,,反比例函數在第一象限的圖象經過點B,則S△OAC-S△BAD=( )
A.1.5B.2.5C.3D.1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com