【題目】已知二次函數(shù)的與的部分對應(yīng)值如表:
下列結(jié)論:①拋物線的開口向上;②拋物線的對稱軸為直線;③當(dāng)時(shí),;④拋物線與軸的兩個(gè)交點(diǎn)間的距離是;⑤若是拋物線上兩點(diǎn),則;⑥. 其中正確的個(gè)數(shù)是( )
A.B.C.D.
【答案】B
【解析】
先利用待定系數(shù)法求出拋物線解析式,則可對①進(jìn)行判斷;求出拋物線的對稱軸則可對②進(jìn)行判斷;利用拋物線與x軸的兩個(gè)交點(diǎn)可對③④進(jìn)行判斷;根據(jù)二次函數(shù)的增減性可對⑤進(jìn)行判斷;根據(jù)a、b、c的具體數(shù)值可對⑥進(jìn)行判斷.
解:由表格可知:拋物線與x軸的交點(diǎn)坐標(biāo)為(0,0),(4,0),∴設(shè)拋物線解析式為y=ax(x﹣4),把(﹣1,5)代入得:5=a×(﹣1)×(﹣1﹣4),解得a=1,∴拋物線解析式為y=x2﹣4x,所以①正確;
∵(0,0)與(4,0)關(guān)于拋物線的對稱軸對稱,∴拋物線的對稱軸為直線x=2,所以②正確;
∵拋物線的開口向上,且與x軸交于點(diǎn)(0,0)、(4,0),∴當(dāng)0<x<4時(shí),y<0,所以③錯誤;
拋物線與x軸的兩個(gè)交點(diǎn)(0,0)與(4,0)間的距離是4,所以④正確;
若A(x1,2),B(x2,3)是拋物線上兩點(diǎn),則,所以x1與x2的大小不能確定,所以⑤錯誤;
∵a=1,b=-4,c=0,∴,所以⑥錯誤.
綜上,正確的個(gè)數(shù)有3個(gè),故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果超市第一次花費(fèi)2200元購進(jìn)甲、乙兩種水果共350千克.已知甲種水果進(jìn)價(jià)每千克5元,售價(jià)每千克10元;乙種水果進(jìn)價(jià)每千克8元,售價(jià)每千克12元.
(1)第一次購進(jìn)的甲、乙兩種水果各多少千克?
(2)由于第一次購進(jìn)的水果很快銷售完畢,超市決定再次購進(jìn)甲、乙兩種水果,它們的進(jìn)價(jià)不變.若要本次購進(jìn)的水果銷售完畢后獲得利潤2090元,甲種水果進(jìn)貨量在第一次進(jìn)貨量的基礎(chǔ)上增加了2m%,售價(jià)比第一次提高了m%;乙種水果的進(jìn)貨量為100千克,售價(jià)不變.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某中學(xué)九年級數(shù)學(xué)活動小組選定測量學(xué)校前面小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i=1:,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y1=x2+bx+c與直線y2=2x+m相交于A(1,4)、B(﹣1,n)兩點(diǎn).
(1)求y1和y2的解析式;
(2)直接寫出y1﹣y2的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】時(shí)代天街某商場經(jīng)營的某品牌書包,6月份的銷售額為20000元,7月份因?yàn)閺S家提高了出廠價(jià),商場把該品牌書包售價(jià)上漲20%,結(jié)果銷量減少50個(gè),使得銷售額減少了2000元.
(1)求6月份該品牌書包的銷售單價(jià);
(2)若6月份銷售該品牌書包獲利8000元,8月份商場為迎接中小學(xué)開學(xué)做促銷活動,該書包在6月售價(jià)的基礎(chǔ)上一律打八折銷售,若成本上漲5%,則銷量至少為多少個(gè),才能保證8月份的利潤比6月份的利潤至少增長6.25%?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象過點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使得△PAC的周長最小,若存在,請求出點(diǎn)P的坐標(biāo)及△PAC的周長;若不存在,請說明理由;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在點(diǎn)M(不與C點(diǎn)重合),使得?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)概念
若點(diǎn)在的內(nèi)部,且、和中有兩個(gè)角相等,則稱是的“等角點(diǎn)”,特別地,若這三個(gè)角都相等,則稱是的“強(qiáng)等角點(diǎn)”.
理解概念
(1)若點(diǎn)是的等角點(diǎn),且,則的度數(shù)是 .
(2)已知點(diǎn)在的外部,且與點(diǎn)在的異側(cè),并滿足,作的外接圓,連接,交圓于點(diǎn).當(dāng)的邊滿足下面的條件時(shí),求證:是的等角點(diǎn).(要求:只選擇其中一道題進(jìn)行證明。
①如圖①,
②如圖②,
深入思考
(3)如圖③,在中,、、均小于,用直尺和圓規(guī)作它的強(qiáng)等角點(diǎn).(不寫作法,保留作圖痕跡)
(4)下列關(guān)于“等角點(diǎn)”、“強(qiáng)等角點(diǎn)”的說法:
①直角三角形的內(nèi)心是它的等角點(diǎn);
②等腰三角形的內(nèi)心和外心都是它的等角點(diǎn);
③正三角形的中心是它的強(qiáng)等角點(diǎn);
④若一個(gè)三角形存在強(qiáng)等角點(diǎn),則該點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等;
⑤若一個(gè)三角形存在強(qiáng)等角點(diǎn),則該點(diǎn)是三角形內(nèi)部到三個(gè)頂點(diǎn)距離之和最小的點(diǎn),其中正確的有 .(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).
(1)求直線與雙曲線的解析式.
(2)點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com