【題目】設(shè)直線ykx+6和直線y=(k+1x+6k是正整數(shù))及x軸圍成的三角形面積為Skk1,23,…,8),則S1+S2+S3++S8的值是(  )

A. B. C. 16D. 14

【答案】C

【解析】

聯(lián)立兩直線解析式成方程組,通過解方程組可求出兩直線的交點(diǎn),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出兩直線與x軸的交點(diǎn)坐標(biāo),利用三角形的面積公式可得出Sk=×6×6(-),將其代入S1+S2+S3++S8中即可求出結(jié)論.

解:聯(lián)立兩直線解析式成方程組,得:

,解得: ,

∴兩直線的交點(diǎn)(0,6),

∵直線y=kx+6x軸的交點(diǎn)為(,0),直線y=(k+1)x+6x軸的交點(diǎn)為(,0),

Sk=×6×|()|=18(-),

S1+S2+S3++S8=18×(1-+-+-+…+-)

=18×(1-),

=18×

=16

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進(jìn)多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為測量旗臺(tái)A與圖書館C之間的直線距離,小明在A處測得C在北偏東30°方向上,然后向正東方向前進(jìn)100米至B處,測得此時(shí)C在北偏西15°方向上,求旗臺(tái)與圖書館之間的距離.(結(jié)果精確到1米,參考數(shù)據(jù)≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程

(1)2x2-4x-10=0 (用配方法)

(2)2x2+3x=4(公式法)

(3)(x-2)2=2(x-2)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是用棋子擺成的字:如果按照以上規(guī)律繼續(xù)擺下去,那么通過觀察,可以發(fā)現(xiàn):第20個(gè)字需用多少枚棋子( 。

A. 78 B. 82 C. 86 D. 90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校開展書香校園活動(dòng)以來,受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計(jì)表.學(xué)生借閱圖書的次數(shù)統(tǒng)計(jì)表

借閱圖書的次數(shù)

0

1

2

3

4次及以上

人數(shù)

7

13

a

10

3

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

______,______.

該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是______,眾數(shù)是______.

請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“3所對(duì)應(yīng)扇形的圓心角的度數(shù);

若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書“4次及以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,HAD上任意一點(diǎn),連接CH,過BBMCHM,交ACF,過DDEBMACE,交CHG,在線段BF上作PF=DG,連接PG,BE,其中PGACN點(diǎn),KBE上一點(diǎn),連接PK,KG,若∠BPK=GPK,CG=12,KP:EF=3:5,求 的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.

(1)在圖1中,畫一個(gè)三角形,使它的三邊長都是有理數(shù);

(2)在圖2中,畫一個(gè)三角形,使它的三邊長分別為3,2,;

(3)在圖3中,畫一個(gè)三角形,使它的三邊都是無理數(shù),并且構(gòu)成的三角形是直角三角形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2cx2c2)(a0)交x軸于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C

1A(-1,0,則點(diǎn)B的坐標(biāo)為___________;

2A(-10),a1,點(diǎn)P為第一象限的拋物線,以P為圓心,為半徑的圓恰好與AC相切,求P點(diǎn)坐標(biāo);

3如圖,點(diǎn)R0,ny軸負(fù)半軸上,直線RB交拋物線于另一點(diǎn)D,直線RA交拋物線于E.若DRDB,EFy軸于F,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案