【題目】填空或填寫理由.
(1)如圖甲,∵∠ =∠ (已知);
∴AB∥CD( )
(2)如圖乙,已知直線a∥b,∠3=80°,求∠1,∠2的度數(shù).
解:∵a∥b,( )
∴∠1=∠4( )
又∵∠3=∠4( )
∠3=80°(已知)
∴∠1=( )(等量代換)
又∵∠2+∠3=180°
∴∠2=( )(等式的性質(zhì))
【答案】見解析
【解析】
(1)依據(jù)內(nèi)錯(cuò)角相等,兩直線平行,即可得到AB∥CD;
(2)依據(jù)兩直線平行,同位角相等,以及對頂角相等,即可得到∠1,∠2的度數(shù).
(1)如圖甲.
∵∠3=∠4(已知);
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行)
故答案為:3,4,內(nèi)錯(cuò)角相等,兩直線平行;
(2)∵a∥b,(已知)
∴∠1=∠4(兩直線平行,同位角相等)
又∵∠3=∠4(對頂角相等)
∠3=80°(已知)
∴∠1=∠3=80°(等量代換)
又∵∠2+∠3=180°,
∴∠2=100°(等式的性質(zhì))
故答案為:已知,兩直線平行,同位角相等,對頂角相等,80°,100°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線 AB,CD 被直線 EF,GH 所截,且∠1=∠2.求證:∠3+∠4=180°.
請將以下推理過程補(bǔ)充完整:
證明:∵直線 AB,CD 被直線 EF 所截,(已知)
∴∠2=∠5._____________
又∵∠1=∠2,(已知)
∴∠1=∠5,_______
∴_______∥_______,_______
∴∠3+∠4=180°._______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】編號為1~5號的5名學(xué)生進(jìn)行定點(diǎn)投籃,規(guī)定每人投5次,每命中1次記1分,沒有命中記0分,如圖是根據(jù)他們各自的累積得分繪制的條形統(tǒng)計(jì)圖.之后來了第6號學(xué)生也按同樣記分規(guī)定投了5次,其命中率為40%.
(1)求第6號學(xué)生的積分,并將圖增補(bǔ)為這6名學(xué)生積分的條形統(tǒng)計(jì)圖;
(2)在這6名學(xué)生中,隨機(jī)選一名學(xué)生,求選上命中率高于50%的學(xué)生的概率;
(3)最后,又來了第7號學(xué)生,也按同樣記分規(guī)定投了5次,這時(shí)7名學(xué)生積分的眾數(shù)仍是前6名學(xué)生積分的眾數(shù),求這個(gè)眾數(shù),以及第7號學(xué)生的積分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】申遺成功后的杭州,在國慶黃金周旅游市場中的知名餐飲受游客追捧,西湖景區(qū)附近的A,B兩家餐飲店在這一周內(nèi)的日營業(yè)額如下表:
(1)要評價(jià)兩家餐飲店日營業(yè)額的平均水平,你選擇什么統(tǒng)計(jì)量?求出這個(gè)統(tǒng)計(jì)量;
(2)分別求出兩家餐飲店各相鄰兩天的日營業(yè)額變化數(shù)量,得出兩組新數(shù)據(jù),然后求出兩組新數(shù)據(jù)的方差,這兩個(gè)方差的大小反映了什么?(結(jié)果精確到0.1)
(3)你能預(yù)測明年黃金周中哪幾天營業(yè)額會比較高嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,E為BC上一點(diǎn),過B作BG⊥AE于G,延長BG至點(diǎn)F使∠CFB=45°
(1)求證:AG=FG;
(2)如圖2延長FC、AE交于點(diǎn)M,連接DF、BM,若C為FM中點(diǎn),BM=10,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動點(diǎn),且滿足∠PAB=∠PBC,則線段CP長的最小值為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AB上一點(diǎn),OD平分∠AOC.
(1)若∠AOC=60°,請求出∠AOD和∠BOC的度數(shù).
(2)若∠AOD和∠DOE互余,且∠AOD=∠AOE,請求出∠AOD和∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com