【題目】 問(wèn)題發(fā)現(xiàn):如圖(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),H為CD的中點(diǎn),當(dāng)點(diǎn)C與點(diǎn)E重臺(tái)時(shí),BH與AE的位置關(guān)系為______,BH與AE的數(shù)量關(guān)系為______;
問(wèn)題證明:在Rt△BDE繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明若不成立,請(qǐng)說(shuō)明理由;
拓展應(yīng)用:在Rt△BDE繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,當(dāng)DE∥BC時(shí),請(qǐng)直接寫(xiě)出BH2的長(zhǎng).
【答案】問(wèn)題發(fā)現(xiàn):AE⊥BH,AE=2BH;問(wèn)題證明:(1)中結(jié)論成立,證明詳見(jiàn)解析;拓展應(yīng)用:12+3或12-3
【解析】
問(wèn)題發(fā)現(xiàn):如圖1中,結(jié)論:AE=2BH,AE⊥BH.解直角三角形求出AC,BH即可判斷.
問(wèn)題證明:如圖2中,(1)中結(jié)論成立.延長(zhǎng)BH到F使得HF=BH,連接CF.設(shè)AE交BF于O.證明△ABE∽△BCF即可解決問(wèn)題.
拓展應(yīng)用:分兩種情形:①如圖3-1中,當(dāng)DE在BC的下方時(shí),延長(zhǎng)AB交DE于F.②當(dāng)DE在BC的上方時(shí),利用上面結(jié)論求出AE2即可解決問(wèn)題.
解:?jiǎn)栴}發(fā)現(xiàn):如圖1中,結(jié)論:AE=2BH,AE⊥BH.
理由:在Rt△ABC中,∵BC=6,∠A=30°,
∴AE=2BC=12,
在Rt△CDB中,∵∠DCB=30°,
∴CD==4,
∵CH=DH,
∴BH=CD=2,
∴==2,
∴AE=2BH.
故答案為AE⊥BH,AE=2BH.
問(wèn)題證明:如圖2中,(1)中結(jié)論成立.
理由:延長(zhǎng)BH到F使得HF=BH,連接CF.設(shè)AE交BF于O.
∵CH=DH,BH=HF,∠CHF=∠BHD,
∴△CHF≌△DHB(SAS),
∴BD=CF,∠F=∠DBH,
∴CF∥BD,
∵AB=BC,BE=BD,
∴BE=CF,
∴==,
∵CF∥BD,
∴∠BCF+∠CBD=180°,
∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,
∴∠BCF=∠ABE,
∴△ABE∽△BCF,
∴∠CBF=∠BAE,==,
∴AE=BF=2BH,
∵∠CBF+∠ABF=90°,
∴∠ABF+∠BAE=90°,
∴∠AOB=90°,
∴BH⊥AE.
拓展應(yīng)用:如圖3-1中,當(dāng)DE在BC的下方時(shí),延長(zhǎng)AB交DE于F.
∵DE∥BC
∴∠ABC=∠BFD=90°,
由題意BC=BE=6,AB=6,BD=2,DE=4,
∵BDBE=DEBF,
∴BF==3,
∴EF=BF=3,
∴AF=6+3,
∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.
∵AE=2BH,
∴AE2=12BH2,
∴BH2=12+3
如圖3-2中,當(dāng)DE在BC的上方時(shí),同法可得AF=6-3,EF=3,
∴BH2==(=12-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,AB=AC,BC=4,⊙O是△ABC的外接圓,若⊙O的半徑為4,則△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,拋物線的頂點(diǎn)為M:平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱(chēng)性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱(chēng)△AMB為該拋物線的“完美三角形”.
(1)如圖2,求出拋物線y=x2的“完美三角形”斜邊AB的長(zhǎng);
(2)若拋物線y=ax2+4的“完美三角形”的斜邊長(zhǎng)為4,求a的值;
(3)若拋物線y=mx2+2x+n﹣5的“完美三角形”斜邊長(zhǎng)為n,且y=mx2+2x+n﹣5的最大值為﹣1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m,200m,分別用、、表示;田賽項(xiàng)目:跳遠(yuǎn),跳高分別用、表示.
該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為______;
該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹(shù)狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中線,E是邊BC上一動(dòng)點(diǎn),將△BED沿ED折疊,點(diǎn)B落在點(diǎn)F處,EF交線段CD于點(diǎn)G,當(dāng)△DFG是直角三角形時(shí),則CE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A的雙曲線y=(x>0)同時(shí)經(jīng)過(guò)點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為,∠AOB=∠OBA=45°,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.
已知是比例三角形,,,請(qǐng)直接寫(xiě)出所有滿足條件的AC的長(zhǎng);
如圖1,在四邊形ABCD中,,對(duì)角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以G(0,3)為圓心,半徑為6的圓與x軸交于A.B兩點(diǎn),與y軸交于C,D兩點(diǎn),點(diǎn)E為⊙G上一動(dòng)點(diǎn),CF⊥AE于F,點(diǎn)E在⊙G的運(yùn)動(dòng)過(guò)程中,線段FG的長(zhǎng)度的最小值為( )
A.1B.2-2C.3D.33
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com